Key roles of surface Fe sites and Sr vacancies in the perovskite for an efficient oxygen evolution reaction via lattice oxygen oxidation

被引:185
作者
Zhao, Jia-Wei [2 ]
Zhang, Hong [4 ]
Li, Cheng-Fei [2 ]
Zhou, Xia [4 ]
Wu, Jin-Qi [2 ]
Zeng, Feng [2 ]
Zhang, Jiangwei [3 ,5 ,6 ]
Li, Gao-Ren [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, Guangzhou 510275, Peoples R China
[3] Inner Mongolia Univ, Coll Chem & Chem Engn, Hohhot 010021, Peoples R China
[4] Lanzhou Univ, Sch Phys Sci & Technol, Elect Microscopy Ctr, Lanzhou 730000, Peoples R China
[5] Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[6] Chinese Acad Sci, State Key Lab Catalysis, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
WATER OXIDATION; CATALYST; CHALLENGES; ELECTROCATALYSTS; RECONSTRUCTION; OXIDES;
D O I
10.1039/d2ee00264g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxygen evolution reaction via lattice oxygen oxidation (LOER) on perovskite catalysts has attracted great interest recently because of its low reaction energy barrier. However, as the surface structure of perovskites is dynamic during catalysis, the active sites and contributing factors of the LOER are still unclear, which seriously limits the development of efficient perovskite catalysts. Herein, by using a flexible etching method, we design and fabricate highly efficient La/Sr-based perovskite catalysts with surface Fe sites and Sr vacancies for the LOER and establish a relationship between the LOER and dynamic surface structure. Theoretical calculations and advanced in situ characterizations, such as in situ X-ray absorption near edge structure (XANES) and in situ Raman, have demonstrated that surface Fe sites act as catalytic centers for the LOER, while Sr vacancies can promote the LOER by upshifting the oxygen 2p levels. Furthermore, the time-of-flight secondary ion mass spectroscopy (tof-SIMS) and differential electrochemical mass spectrometry (DEMS) results reveal that the LOER on perovskites is realized by lattice oxygen dynamic changes via the adsorbed (OH)-O-16 transforming to Co-O-18-O-16 in the O-18 isotope labeling experiment. The synthesized La/Sr-based perovskite catalyst shows superior OER catalytic performance, which is higher than that of the RuO2/C catalyst. This work not only proves the key roles of surface Fe doping and Sr dynamic dissolution in achieving an efficient LOER, but also paves the way for design of high-performance perovskite catalysts.
引用
收藏
页码:3912 / 3922
页数:11
相关论文
共 55 条
[11]   Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution [J].
Grimaud, Alexis ;
May, Kevin J. ;
Carlton, Christopher E. ;
Lee, Yueh-Lin ;
Risch, Marcel ;
Hong, Wesley T. ;
Zhou, Jigang ;
Shao-Horn, Yang .
NATURE COMMUNICATIONS, 2013, 4
[12]   Tuning the Spin State in LaCoO3 Thin Films for Enhanced High-Temperature Oxygen Electrocatalysis [J].
Hong, Wesley T. ;
Gadre, Milind ;
Lee, Yueh-Lin ;
Biegalski, Michael D. ;
Christen, Hans M. ;
Morgan, Dane ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (15) :2493-2499
[13]   Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting [J].
Hou, Ping ;
Li, Dan ;
Yang, Nailiang ;
Wan, Jiawei ;
Zhang, Chunhui ;
Zhang, Xiqi ;
Jiang, Hongyu ;
Zhang, Qinghua ;
Gu, Lin ;
Wang, Dan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :6926-6931
[14]   Cation-Dependent Interfacial Structures and Kinetics for Outer-Sphere Electron-Transfer Reactions [J].
Huang, Botao ;
Myint, Kyaw Hpone ;
Wang, Yanming ;
Zhang, Yirui ;
Rao, Reshma R. ;
Sun, Jame ;
Muy, Sokseiha ;
Katayama, Yu ;
Garcia, Juan Corchado ;
Fraggedakis, Dimitrios ;
Grossman, Jeffrey C. ;
Bazant, Martin Z. ;
Xu, Kang ;
Willard, Adam P. ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (08) :4397-4411
[15]   Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts [J].
Huang, Zhen-Feng ;
Song, Jiajia ;
Du, Yonghua ;
Xi, Shibo ;
Dou, Shuo ;
Nsanzimana, Jean Marie Vianney ;
Wang, Cheng ;
Xu, Zhichuan J. ;
Wang, Xin .
NATURE ENERGY, 2019, 4 (04) :329-338
[16]   Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction [J].
Kim, Bae-Jung ;
Fabbri, Emiliana ;
Abbott, Daniel F. ;
Cheng, Xi ;
Clark, Adam H. ;
Nachtegaal, Maarten ;
Borlaf, Mario ;
Castelli, Ivano E. ;
Graule, Thomas ;
Schmidt, Thomas J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (13) :5231-5240
[17]   Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions [J].
Lee, Youngmin ;
Suntivich, Jin ;
May, Kevin J. ;
Perry, Erin E. ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (03) :399-404
[18]   Improving the Catalytic Efficiency of NiFe-LDH/ATO by Air Plasma Treatment for Oxygen Evolution Reaction [J].
Lei Chong ;
Li Wenzheng ;
Wang Gongwei ;
Zhuang Lin ;
Lu Juntao ;
Xiao Li .
CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2021, 37 (02) :293-297
[19]   Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction [J].
Lei, Jia ;
Zeng, Mengqi ;
Fu, Lei .
CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (04) :504-510
[20]   Powering the planet: Chemical challenges in solar energy utilization [J].
Lewis, Nathan S. ;
Nocera, Daniel G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (43) :15729-15735