Key roles of surface Fe sites and Sr vacancies in the perovskite for an efficient oxygen evolution reaction via lattice oxygen oxidation

被引:185
作者
Zhao, Jia-Wei [2 ]
Zhang, Hong [4 ]
Li, Cheng-Fei [2 ]
Zhou, Xia [4 ]
Wu, Jin-Qi [2 ]
Zeng, Feng [2 ]
Zhang, Jiangwei [3 ,5 ,6 ]
Li, Gao-Ren [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, Guangzhou 510275, Peoples R China
[3] Inner Mongolia Univ, Coll Chem & Chem Engn, Hohhot 010021, Peoples R China
[4] Lanzhou Univ, Sch Phys Sci & Technol, Elect Microscopy Ctr, Lanzhou 730000, Peoples R China
[5] Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[6] Chinese Acad Sci, State Key Lab Catalysis, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
WATER OXIDATION; CATALYST; CHALLENGES; ELECTROCATALYSTS; RECONSTRUCTION; OXIDES;
D O I
10.1039/d2ee00264g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxygen evolution reaction via lattice oxygen oxidation (LOER) on perovskite catalysts has attracted great interest recently because of its low reaction energy barrier. However, as the surface structure of perovskites is dynamic during catalysis, the active sites and contributing factors of the LOER are still unclear, which seriously limits the development of efficient perovskite catalysts. Herein, by using a flexible etching method, we design and fabricate highly efficient La/Sr-based perovskite catalysts with surface Fe sites and Sr vacancies for the LOER and establish a relationship between the LOER and dynamic surface structure. Theoretical calculations and advanced in situ characterizations, such as in situ X-ray absorption near edge structure (XANES) and in situ Raman, have demonstrated that surface Fe sites act as catalytic centers for the LOER, while Sr vacancies can promote the LOER by upshifting the oxygen 2p levels. Furthermore, the time-of-flight secondary ion mass spectroscopy (tof-SIMS) and differential electrochemical mass spectrometry (DEMS) results reveal that the LOER on perovskites is realized by lattice oxygen dynamic changes via the adsorbed (OH)-O-16 transforming to Co-O-18-O-16 in the O-18 isotope labeling experiment. The synthesized La/Sr-based perovskite catalyst shows superior OER catalytic performance, which is higher than that of the RuO2/C catalyst. This work not only proves the key roles of surface Fe doping and Sr dynamic dissolution in achieving an efficient LOER, but also paves the way for design of high-performance perovskite catalysts.
引用
收藏
页码:3912 / 3922
页数:11
相关论文
共 55 条
[1]   Activation of ultrathin SrTiO3 with subsurface SrRuO3 for the oxygen evolution reaction [J].
Akbashev, A. R. ;
Zhang, L. ;
Mefford, J. T. ;
Park, J. ;
Butz, B. ;
Luftman, H. ;
Chueh, W. C. ;
Vojvodic, A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) :1762-1769
[2]  
[Anonymous], 2018, NAT REV CHEM, V2
[3]   An Amorphous Nickel-Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction [J].
Chen, Gao ;
Zhu, Yapping ;
Chen, Hao Ming ;
Hu, Zhiwei ;
Hung, Sung-Fu ;
Ma, Nana ;
Dai, Jie ;
Lin, Hong-Ji ;
Chen, Chien-Te ;
Zhou, Wei ;
Shao, Zongping .
ADVANCED MATERIALS, 2019, 31 (28)
[4]   Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofilms with tunable oxidation state [J].
Chen, Gao ;
Zhou, Wei ;
Guan, Daqin ;
Sunarso, Jaka ;
Zhu, Yanping ;
Hu, Xuefeng ;
Zhang, Wei ;
Shao, Zongping .
SCIENCE ADVANCES, 2017, 3 (06)
[5]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[6]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[7]  
Fabbri E, 2017, NAT MATER, V16, P925, DOI [10.1038/NMAT4938, 10.1038/nmat4938]
[8]   The stability number as a metric for electrocatalyst stability benchmarking [J].
Geiger, Simon ;
Kasian, Olga ;
Ledendecker, Marc ;
Pizzutilo, Enrico ;
Mingers, Andrea M. ;
Fu, Wen Tian ;
Diaz-Morales, Oscar ;
Li, Zhizhong ;
Oellers, Tobias ;
Fruchter, Luc ;
Ludwig, Alfred ;
Mayrhofer, Karl J. J. ;
Koper, Marc T. M. ;
Cherevko, Serhiy .
NATURE CATALYSIS, 2018, 1 (07) :508-515
[9]   pH dependence of OER activity of oxides: Current and future perspectives [J].
Giordano, Livia ;
Han, Binghong ;
Risch, Marcel ;
Hong, Wesley T. ;
Rao, Reshma R. ;
Stoerzinger, Kelsey A. ;
Shao-Horn, Yang .
CATALYSIS TODAY, 2016, 262 :2-10
[10]  
Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/nchem.2695, 10.1038/NCHEM.2695]