A short proof of the Buchstaber-Rees theorem

被引:2
作者
Khudaverdian, H. M. [1 ]
Voronov, Th. Th. [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2011年 / 369卷 / 1939期
关键词
Berezinian (superdeterminant); Frobenius recursion; symmetric powers; maps of algebras; n-homomorphism; p vertical bar q-homomorphism; RINGS;
D O I
10.1098/rsta.2010.0310
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We give a short proof of the Buchstaber-Rees theorem concerning symmetric powers. The proof is based on the notion of a formal characteristic function of a linear map of algebras.
引用
收藏
页码:1334 / 1345
页数:12
相关论文
共 12 条
[1]  
[Anonymous], 2002, SEL MATH
[2]  
Berezin F.A., 1987, MATH PHYS APPL MATH, V9
[3]   Frobenius n-homomorphisms, transfers and branched coverings [J].
Buchstaber, V. M. ;
Rees, E. G. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 :1-12
[4]   Rings of continuous functions, symmetric products, and Frobenius algebras [J].
Buchstaber, VM ;
Rees, EG .
RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (01) :125-145
[5]  
BUCHSTABER VM, 1997, RUSS MATH SURV, V52, P398
[6]  
BUCHSTABER VM, 1996, RUSS MATH SURV, V51, P727, DOI DOI 10.1070/RM1996V051N04ABEH002976
[7]  
Gelfand I, 1939, CR ACAD SCI URSS, V22, P11
[8]  
Khudaverdian HM, 2007, AIP CONF PROC, V956, P149, DOI 10.1063/1.2820962
[9]   Berezinians, exterior powers and recurrent sequences - To the memory of Felix Alexandrovich Berezin [J].
Khudaverdian, HM ;
Voronov, TT .
LETTERS IN MATHEMATICAL PHYSICS, 2005, 74 (02) :201-228
[10]  
KHUDAVERDIAN HM, 2007, RUSS MATH SURV, V62, P623, DOI DOI 10.1070/RM2007V062N03ABEH004419