Discrete-time fractional variational problems

被引:179
作者
Bastos, Nuno R. O. [2 ]
Ferreira, Rui A. C. [3 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Polytech Inst Viseu, Dept Math, ESTGV, P-3504510 Viseu, Portugal
[3] Lusophone Univ Humanities & Technol, Fac Engn & Nat Sci, P-1749024 Lisbon, Portugal
关键词
Fractional difference calculus; Calculus of variations; Fractional summation by parts; Euler-Lagrange equation; Natural boundary conditions; Legendre necessary condition; Time scale hZ; EULER-LAGRANGE EQUATIONS; HAMILTONIAN-FORMULATION; NUMERICAL SCHEME; NOETHERS THEOREM; CALCULUS; SCALES; MOTION; DERIVATIVES; PRINCIPLES;
D O I
10.1016/j.sigpro.2010.05.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a discrete-time fractional calculus of variations on the time scale (hZ)(a), a is an element of R,h > 0. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler-Lagrange and Legendre type conditions are given. They show that solutions to the considered fractional problems become the classical discrete-time solutions when the fractional order of the discrete-derivatives are integer values, and that they converge to the fractional continuous-time solutions when h tends to zero. Our Legendre type condition is useful to eliminate false candidates identified via the Euler-Lagrange fractional equation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:513 / 524
页数:12
相关论文
共 50 条
[1]   A general finite element formulation for fractional variational problems [J].
Agrawal, Om P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :1-12
[2]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]   A fractional calculus of variations for multiple integrals with application to vibrating string [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[5]   Calculus of variations with fractional derivatives and fractional integrals [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1816-1820
[6]   Holderian variational problems subject to integral constraints [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) :674-681
[7]   Isoperimetric Problems on Time Scales with Nabla Derivatives [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
JOURNAL OF VIBRATION AND CONTROL, 2009, 15 (06) :951-958
[8]  
[Anonymous], 2006, THEORY APPL FRACTION
[9]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[10]  
[Anonymous], 1999, FRACTIONAL DIFFERENT