COHERENT MEG/EEG SOURCE LOCALIZATION IN TRANSFORMED DATA SPACE

被引:3
|
作者
Zhang, Junpeng [1 ]
Dalal, Sarang S. [2 ]
Nagarajan, Srikantan S. [3 ]
Yao, Dezhong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Minist Educ, Key Lab NeuroInformat, Chengdu 610054, Peoples R China
[2] INSERM, Mental Proc & Brain Activat Lab, F-69500 Bron, France
[3] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA
来源
BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS | 2010年 / 22卷 / 05期
关键词
MEG; sLORETA; AEF; Brain source localization; MUSIC; RECONSTRUCTING SPATIOTEMPORAL ACTIVITIES; EEG SOURCE LOCALIZATION; ELECTROMAGNETIC TOMOGRAPHY; ELECTRICAL-ACTIVITY; MEG; BRAIN; RESOLUTION; MUSIC; BEAMFORMER;
D O I
10.4015/S1016237210002110
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In some cases, different brain regions give rise to strongly-coherent electrical neural activities. For example, pure tone evoked activations of the bilateral auditory cortices exhibit strong coherence. Conventional 2nd order statistics-based spatio-temporal algorithms, such as MUSIC (MUltiple SIgnal Classification) and beamforming encounter difficulties in localizing such activities. In this paper, we proposed a novel solution for this case. The key idea is to map the measurement data into a new data space through a transformation prior to the localization. The orthogonal complement of the lead field matrix for the region to be suppressed is generated as the transformation matrix. Using a priori knowledge or another independent imaging method, such as sLORETA (standard LOw REsolution brain electromagnetic TomogrAphy), the coherent source regions can be primarily identified. And then, in the transformed data space a conventional spatio-temporal method, such as MUSIC, can be used to accomplish the localization of the remaining coherent sources. Repeatedly applying the method will achieve localization of all the coherent sources. The algorithm was validated by simulation experiments as well as by the reconstructions of real bilateral auditory cortical coherent activities.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
  • [41] Towards an objective evaluation of EEG/MEG source estimation methods - The linear approach
    Hauk, Olaf
    Stenroos, Matti
    Treder, Matthias S.
    NEUROIMAGE, 2022, 255
  • [42] Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging
    Ramirez, Rey R.
    Kopell, Brian H.
    Butson, Christopher R.
    Hiner, Bradley C.
    Baillet, Sylvain
    NEUROIMAGE, 2011, 56 (01) : 78 - 92
  • [43] Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization
    Makela, Niko
    Stenroos, Matti
    Sarvas, Jukka
    Ilmoniemi, Risto J.
    NEUROIMAGE, 2018, 167 : 73 - 83
  • [44] Ictal MEG onset source localization compared to intracranial EEG and outcome: Improved epilepsy presurgical evaluation in pediatrics
    Fujiwara, Hisako
    Greiner, Hansel M.
    Hemasilpin, Nat
    Lee, Ki Hyeong
    Holland-Bouley, Katherine
    Arthur, Todd
    Morita, Diego
    Jain, Sejal V.
    Mangano, Francesco T.
    deGrauw, Ton
    Rose, Douglas F.
    EPILEPSY RESEARCH, 2012, 99 (03) : 214 - 224
  • [45] Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach
    Birot, Gwenael
    Albera, Laurent
    Wendling, Fabrice
    Merlet, Isabelle
    NEUROIMAGE, 2011, 56 (01) : 102 - 113
  • [46] Localization techniques for EEG and MEG in children and adolescents
    Brandl, U
    NERVENHEILKUNDE, 1999, 18 (06) : 282 - 286
  • [47] Scanning Reduction Strategy in MEG/EEG Beamformer Source Imaging
    Hong, Jun Hee
    Jun, Sung Chan
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [48] Influence of the head model on EEG and MEG source connectivity analyses
    Cho, Jae-Hyun
    Vorwerk, Johannes
    Wolters, Carsten H.
    Knoesche, Thomas R.
    NEUROIMAGE, 2015, 110 : 60 - 77
  • [49] Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes
    Farahibozorg, Seyedeh-Rezvan
    Henson, Richard N.
    Hauk, Olaf
    NEUROIMAGE, 2018, 169 : 23 - 45
  • [50] MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG
    Dalal, Sarang S.
    Zumer, Johanna M.
    Guggisberg, Adrian G.
    Trumpis, Michael
    Wong, Daniel D. E.
    Sekihara, Kensuke
    Nagarajan, Srikantan S.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011