On Sobolev orthogonality for the generalized Laguerre polynomials

被引:32
作者
Perez, TE
Pinar, MA
机构
[1] Depto. de Matemática Aplicada, Universidad de Granada, Granada
关键词
D O I
10.1006/jath.1996.0069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The orthogonality of the generalized Laguerre polynomials, {L(n)((alpha))(x)} (n greater than or equal to 0), is a well known fact when the parameter alpha is a real number but not a negative integer. In fact, for -1 <alpha, they are orthogonal on the interval [0 + infinity) with respect to the weight function rho(x) = x(alpha)e(-x), and for alpha < -1, but not an integer, they are orthogonal with respect to a non-positive definite linear functional. In this work we will show that, for every value of the real parameter alpha, the generalized Laguerre polynomials are orthogonal with respect to a non-diagonal Sobolev inner product, that is, an inner product involving derivatives. (C) 1996 Academic Press, Inc.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 6 条
[1]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[2]  
EVERITT WN, SPECTRAL THEORY LAGU
[3]  
KWON KH, 1995, ANN NUMER ANAL, V2, P1
[4]  
Kwon KH., 1995, ANN NUMER ANAL, V2, P289
[5]  
Stoer J., 2013, INTRO NUMERICAL ANAL, V12
[6]  
SZEGO G, 1975, AM MATH SOC C PUBL, V23