Dynamics and Lattice-Size Dependence of Surface Mean Slope in Thin-Film Deposition

被引:16
作者
Huang, Jianqiao [1 ]
Hu, Gangshi [1 ]
Orkoulas, Gerassimos [1 ]
Christofides, Panagiotis D. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
KINETIC MONTE-CARLO; FEEDBACK-CONTROL; ROUGHNESS; GROWTH; SIMULATION; POROSITY;
D O I
10.1021/ie100012w
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work focuses on the study of the dynamic behavior and lattice-size dependence of the surface root-mean-square slope of thin-film deposition processes that involve thermal balance between film growth and surface relaxation. Two different deposition processes taking place on square and triangular lattices are introduced and used to investigate the dynamics and lattice-size dependence of the surface root-mean-square slope. The simulation results indicate that the expected mean slope square reaches quickly a steady-state value and exhibits a very weak dependence with respect to lattice size variation. The simulation findings are corroborated by an analysis of appropriate finite-difference discretizations of surface height profiles computed by an Edwards-Wilkinson-type partial differential equation that can be used to describe the dynamics of surface height profile in the deposition processes under consideration.
引用
收藏
页码:1219 / 1230
页数:12
相关论文
共 30 条
[1]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[2]   Control and optimization of multiscale process systems [J].
Christofides, Panagiotis D. ;
Armaou, Antonios .
COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (10-12) :1670-1686
[3]  
Christofides PD, 2009, CONTROL ENG SER BIRK, P1, DOI 10.1007/978-0-8176-4793-3_1
[4]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[5]   SCALING OF ROUGH SURFACES - EFFECTS OF SURFACE-DIFFUSION [J].
FAMILY, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08) :L441-L446
[6]   Renormalization of stochastic lattice models: Epitaxial surfaces [J].
Haselwandter, Christoph A. ;
Vvedensky, Dimitri D. .
PHYSICAL REVIEW E, 2008, 77 (06)
[7]   Renormalization of stochastic lattice models: Basic formulation [J].
Haselwandter, Christoph A. ;
Vvedensky, Dimitri D. .
PHYSICAL REVIEW E, 2007, 76 (04)
[8]   Stochastic equation for the morphological evolution of heteroepitaxial thin films [J].
Haselwandter, Christoph A. ;
Vvedensky, Dimitri D. .
PHYSICAL REVIEW B, 2006, 74 (12)
[9]   Dynamic output feedback covariance control of stochastic dissipative partial differential equations [J].
Hu, Gangshi ;
Lou, Yiming ;
Christofides, Panagiotis D. .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (18) :4531-4542
[10]   Investigation of film surface roughness and porosity dependence on lattice size in a porous thin film deposition process [J].
Hu, Gangshi ;
Huang, Jianqiao ;
Orkoulas, Gerassimos ;
Christofides, Panagiotis D. .
PHYSICAL REVIEW E, 2009, 80 (04)