The isoperimetric problem on some singular surfaces

被引:8
作者
Cotton, A [1 ]
Freeman, D [1 ]
Gnepp, A [1 ]
Ng, T [1 ]
Spivack, J [1 ]
Yoder, C [1 ]
机构
[1] Care Of Frank Morgan, Williams Coll, Dept Math, Williamstown, MA 01267 USA
关键词
D O I
10.1017/S1446788700008016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize least-perimeter enclosures of prescribed area on some piecewise smooth manifolds, including certain polyhedra, double spherical caps, and cylindrical cans.
引用
收藏
页码:167 / 197
页数:31
相关论文
共 16 条
  • [1] ALMGREN F, 1987, S REND CIRC MAT PALE, V15, P11
  • [2] BARBER M, 1995, GEODESICS GEODESIC R
  • [3] An isoperimetric comparison theorem for Schwarzschild space and other manifolds
    Bray, H
    Morgan, F
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (05) : 1467 - 1472
  • [4] BURAGO YD, 1980, GEOMETRIC INEQUALITI
  • [5] ERCHAK A, 1996, GEODESIC NETS REGULA
  • [6] Federer H., 2014, GEOMETRIC MEASURE TH
  • [7] GNEPP A, 1998, ISOPERIMETRIC DOMAIN
  • [8] HEPPES A, 1995, E MAIL COMMUNICATION
  • [9] The isoperimetric problem on surfaces
    Howards, H
    Hutchings, M
    Morgan, F
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (05) : 430 - 439
  • [10] Ivanov A. O., 1994, MINIMAL NETWORKS STE