Numerical Solving of Boundary Value Problems on Multiblock Grids

被引:0
作者
Martynenko, S. I. [1 ,2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Moscow Oblast, Russia
[2] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
[3] Bauman Moscow State Tech Univ, Moscow 105005, Russia
[4] Cent Inst Aviat Motors, Moscow 111116, Russia
基金
俄罗斯基础研究基金会;
关键词
boundary value problems; multigrid methods; multiblock grids;
D O I
10.1134/S096554252109013X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Results of a theoretical analysis of the convergence of geometric multigrid algorithms in solving linear boundary value problems on two-block grids are presented. The smoothing property for a nonsymmetric iterative method with parameter and the convergence of the robust multigrid technique are proved. It is shown that the number of multigrid iterations does not depend on either the step size or the number of grid blocks. Results of computational experiments on solving a three-dimensional Dirichlet boundary value problem for a Poisson equation are given, which illustrate the theoretical analysis. This paper is of interest for developers of highly efficient algorithms to solve boundary value problems in domains with complicated geometry.
引用
收藏
页码:1375 / 1386
页数:12
相关论文
共 13 条
  • [1] Brandt A., 1982, ALGEBRAIC MULTIGRID
  • [2] Frederickson P.O., 1991, MULTIGRID METHODS 3, P21
  • [3] FREDERICKSON PO, 1988, MULTIGRID METHODS TH
  • [4] Hageman LA., 1981, APPL ITERATIVE METHO
  • [5] Ilin V.P., 2017, MATH MODELING 1
  • [6] Jolla L, 1985, MULTIGRID METHODS AP, P17, DOI DOI 10.1007/978-3-662-02427-0
  • [7] Martynenko S.I., 2020, SEQUENTIAL SOFTWARE
  • [8] Martynenko S. I., 2017, The robust multigrid technique: For black-box software, DOI [10.1515/9783110539264, DOI 10.1515/9783110539264]
  • [9] Ol'shanskii M.A., 2005, LECT EXERCISES MULTI
  • [10] Trottenberg U., 2000, Multigrid