Classifying Near-Threshold Enhancement Using Deep Neural Network

被引:8
作者
Sombillo, Denny Lane B. [1 ,3 ]
Ikeda, Yoichi [2 ]
Sato, Toru [3 ]
Hosaka, Atsushi [3 ]
机构
[1] Univ Philippines Diliman, Natl Inst Phys, Quezon City 1101, Philippines
[2] Kyushu Univ, Dept Phys, Fukuoka 8190395, Japan
[3] Osaka Univ, Res Ctr Nucl Phys RCNP, Ibaraki, Osaka 5670047, Japan
关键词
NUCLEON-NUCLEON POTENTIALS;
D O I
10.1007/s00601-021-01642-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the main issues in hadron spectroscopy is to identify the origin of threshold or near-threshold enhancement. Prior to our study, there is no straightforward way of distinguishing even the lowest channel threshold-enhancement of the nucleon-nucleon system using only the cross-sections. The difficulty lies in the proximity of either a bound or virtual state pole to the threshold which creates an almost identical structure in the scattering region. Identifying the nature of the pole causing the enhancement falls under the general classification problem and supervised machine learning using a feed-forward neural network is known to excel in this task. In this study, we discuss the basic idea behind deep neural network and how it can be used to identify the nature of the pole causing the enhancement. The applicability of the trained network can be explored by using an exact separable potential model to generate a validation dataset. We find that within some acceptable range of the cut-off parameter, the neural network gives high accuracy of inference. The result also reveals the important role played by the background singularities in the training dataset. Finally, we apply the method to nucleon-nucleon scattering data and show that the network was able to give the correct nature of pole, i.e. virtual pole for S-1(0) partial cross-section and bound state pole for S-3(0).
引用
收藏
页数:7
相关论文
共 27 条
  • [1] Study of the lineshape of the χc1 (3872) state
    Aaij, R.
    Beteta, C. Abellan
    Ackernley, T.
    Adeva, B.
    Adinolfi, M.
    Afsharnia, H.
    Aidala, C. A.
    Aiola, S.
    Ajaltouni, Z.
    Akar, S.
    Albrecht, J.
    Alessio, F.
    Alexander, M.
    Alfonso Albero, A.
    Aliouche, Z.
    Alkhazov, G.
    Cartelle, P. Alvarez
    Alves, A. A., Jr.
    Amato, S.
    Amhis, Y.
    An, L.
    Anderlini, L.
    Andreassi, G.
    Andreianov, A.
    Andreotti, M.
    Archilli, F.
    Artamonov, A.
    Artuso, M.
    Arzymatov, K.
    Aslanides, E.
    Atzeni, M.
    Audurier, B.
    Bachmann, S.
    Bachmayer, M.
    Back, J. J.
    Baker, S.
    Rodriguez, P. Baladron
    Balagura, V
    Baldini, W.
    Baptista Leite, J.
    Barlow, R. J.
    Barsuk, S.
    Barter, W.
    Bartolini, M.
    Baryshnikov, F.
    Basels, J. M.
    Bassi, G.
    Batozskaya, V
    Batsukh, B.
    Battig, A.
    [J]. PHYSICAL REVIEW D, 2020, 102 (09)
  • [2] Aggarwal C C, 2018, Neural networks and deep learning: a textbookM, DOI DOI 10.1007/978-3-319-94463-0
  • [3] Akiba T., 2017, P WORKSH ML SYST NIP
  • [4] Alpaydin E., 2020, INTRO MACHINE LEARNI, V1191, P68485
  • [5] Machine and deep learning applications in particle physics
    Bourilkov, Dimitri
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (35):
  • [6] Machine learning and the physical sciences
    Carleo, Giuseppe
    Cirac, Ignacio
    Cranmer, Kyle
    Daudet, Laurent
    Schuld, Maria
    Tishby, Naftali
    Vogt-Maranto, Leslie
    Zdeborova, Lenka
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
  • [7] Explaining the Many Threshold Structures in the Heavy-Quark Hadron Spectrum
    Dong, Xiang-Kun
    Guo, Feng-Kun
    Zou, Bing-Song
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (15)
  • [8] etal R. Aaji, 2020, SCI BULL, V65, P1983
  • [9] etal R. Aaji, 2019, PHYS REV LETT, V122
  • [10] Threshold cusps and triangle singularities in hadronic reactions
    Guo, Feng-Kun
    Liu, Xiao-Hai
    Sakai, Shuntaro
    [J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2020, 112