Biofabrication of Cell-Loaded 3D Spider Silk Constructs

被引:184
作者
Schacht, Kristin [1 ]
Juengst, Tomasz [2 ]
Schweinlin, Matthias [3 ]
Ewald, Andrea [2 ]
Groll, Juergen [2 ]
Scheibel, Thomas [1 ]
机构
[1] Univ Bayreuth, Lehrstuhl Biomat, D-95447 Bayreuth, Germany
[2] Univ Klinikum Wurzburg, Lehrstuhl Funkt Werkstoffe Med & Zahnheilkunde, D-97070 Wurzburg, Germany
[3] Univ Klinikum Wurzburg, Lehrstuhl Tissue Engn & Regenerat Med, D-97070 Wurzburg, Germany
关键词
biofabrication; cell encapsulation; fibroblasts; hydrogels; spider silk; SCAFFOLD DESIGN; HYDROGELS; PROLIFERATION; BIOMATERIALS; FABRICATION; ELASTICITY; ADHESION; FIBROIN; BIOINK;
D O I
10.1002/anie.201409846
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell-material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.
引用
收藏
页码:2816 / 2820
页数:5
相关论文
共 44 条
[1]   Biodegradable polymer matrix nanocomposites for tissue engineering: A review [J].
Armentano, I. ;
Dottori, M. ;
Fortunati, E. ;
Mattioli, S. ;
Kenny, J. M. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (11) :2126-2146
[2]   3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine [J].
Bajaj, Piyush ;
Schweller, Ryan M. ;
Khademhosseini, Ali ;
West, Jennifer L. ;
Bashir, Rashid .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 16, 2014, 16 :247-276
[3]   Controllable cell adhesion, growth and orientation on layered silk protein films [J].
Bauer, Felix ;
Wohlrab, Stefanie ;
Scheibel, Thomas .
BIOMATERIALS SCIENCE, 2013, 1 (12) :1244-1249
[4]   The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability [J].
Billiet, Thomas ;
Gevaert, Elien ;
De Schryver, Thomas ;
Cornelissen, Maria ;
Dubruel, Peter .
BIOMATERIALS, 2014, 35 (01) :49-62
[5]   Printing and Prototyping of Tissues and Scaffolds [J].
Derby, Brian .
SCIENCE, 2012, 338 (6109) :921-926
[6]   Hydrogels for tissue engineering: scaffold design variables and applications [J].
Drury, JL ;
Mooney, DJ .
BIOMATERIALS, 2003, 24 (24) :4337-4351
[7]   3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels [J].
Duan, Bin ;
Hockaday, Laura A. ;
Kang, Kevin H. ;
Butcher, Jonathan T. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2013, 101 (05) :1255-1264
[8]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689
[9]   Multiscale Modeling of Form and Function [J].
Engler, Adam J. ;
Humbert, Patrick O. ;
Wehrle-Haller, Bernhard ;
Weaver, Valerie M. .
SCIENCE, 2009, 324 (5924) :208-212
[10]   Impact of Sterilization on the Enzymatic Degradation and Mechanical Properties of Silk Biomaterials [J].
Gil, Eun Seok ;
Park, Sang-Hyug ;
Hu, Xiao ;
Cebe, Peggy ;
Kaplan, David L. .
MACROMOLECULAR BIOSCIENCE, 2014, 14 (02) :257-269