Metric dimension of Cayley digraphs of split metacyclic groups

被引:6
作者
Abas, Marcel [1 ]
Vetrik, Tomas [2 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Mat Sci & Technol Trnava, Inst Appl Informat Automat & Math, Trnava, Slovakia
[2] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
Metric dimension; Directed Cayley graph; Metacyclic group; Networks;
D O I
10.1016/j.tcs.2019.11.025
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A directed Cayley graph Cay(Gamma, X) is specified by a group Gamma and an identity-free generating set X for this group. Vertices of Cay(Gamma, X) are elements of Gamma and there is a directed edge from a vertex u to a vertex v in Cay(Gamma, X) if and only if there is a generator x is an element of X such that ux = v. We study the metric dimension for the directed Cayley graphs Cay(Gamma(s) , {a,b}) of general split metacyclic groups, and present the exact values of the metric dimension for the special split metacyclic groups Gamma(s) = < a, b vertical bar a(n) = b(2s) =1, ba = a(-1)b >. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 12 条
  • [1] Resolvability in graphs and the metric dimension of a graph
    Chartrand, G
    Eroh, L
    Johnson, MA
    Oellermann, OR
    [J]. DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) : 99 - 113
  • [2] Chartrand G., 2000, Math. Bohemica, V125, P155
  • [3] Chau K, 2017, OPUSC MATH, V37, P509, DOI 10.7494/OpMath.2017.37.4.509
  • [4] The metric dimension of Cayley digraphs
    Fehr, M
    Gosselin, S
    Oellermann, OR
    [J]. DISCRETE MATHEMATICS, 2006, 306 (01) : 31 - 41
  • [5] Harary F., 1976, Ars Combin., V2, P1, DOI DOI 10.1016/J.DAM.2012.10.018
  • [6] Landmarks in graphs
    Khuller, S
    Raghavachari, B
    Rosenfeld, A
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 70 (03) : 217 - 229
  • [7] Manuel P, 2011, ARS COMBINATORIA, V98, P501
  • [8] METRIC BASES IN DIGITAL GEOMETRY
    MELTER, RA
    TOMESCU, I
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 25 (01): : 113 - 121
  • [9] Oellermann OR, 2006, ARS COMBINATORIA, V81, P97
  • [10] Rajan B, 2014, ARS COMBINATORIA, V117, P95