Pseudogene PTENP1 functions as a competing endogenous RNA (ceRNA) to regulate PTEN expression by sponging miR-499-5p

被引:25
作者
Wang, Lei [1 ]
Zhang, Ning [2 ]
Wang, Zun [1 ]
Ai, Dong-mei [1 ]
Cao, Zhen-yu [1 ]
Pan, Hua-ping [3 ]
机构
[1] Nanjing Univ Chinese Med, Med Sch 2, Dept Rehabil Med, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Nanjing Drum Tower Hosp, Dept Cardiol, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Affiliated Jiangning Hosp, Dept Rehabil Med, Nanjing 211100, Jiangsu, Peoples R China
关键词
MICRORNAS; MIRNA;
D O I
10.1134/S0006297916070105
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Increasing evidence has shown that pseudogenes can widely regulate gene expression. However, little is known about the specific role of PTENP1 and miR-499-5p in insulin resistance. The relative transcription level of PTENP1 was examined in db/db mice and high fat diet (HFD)-fed mice by real-time PCR. To explore the effect of PTENP1 on insulin resistance, adenovirus overexpressing or inhibiting vectors were injected through the tail vein. Bioinformatics predictions and a luciferase reporter assay were used to explore the interaction between PTENP1 and miR-499-5p. The relative transcription level of PTENP1 was largely enhanced in db/db mice and HFD-fed mice. Furthermore, the overexpression of PTENP1 resulted in impaired Akt/GSK activation as well as glycogen synthesis, while PTENP1 inhibition led to the improved activation of Akt/GSK and enhanced glycogen contents. More importantly, PTENP1 could directly bind miR-499-5p, thereby becoming a sink for miR-499-5p. PTENP1 overexpression results in the impairment of the insulin-signaling pathway and may function as a competing endogenous RNA for miR-499-5p, thereby contributing to insulin resistance.
引用
收藏
页码:739 / 747
页数:9
相关论文
共 20 条
[1]   A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA [J].
Cesana, Marcella ;
Cacchiarelli, Davide ;
Legnini, Ivano ;
Santini, Tiziana ;
Sthandier, Olga ;
Chinappi, Mauro ;
Tramontano, Anna ;
Bozzoni, Irene .
CELL, 2011, 147 (02) :358-369
[2]  
D'Errico Ilenia, 2004, Briefings in Functional Genomics & Proteomics, V3, P157, DOI 10.1093/bfgp/3.2.157
[3]   microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis [J].
Frampton, Adam E. ;
Krell, Jonathan ;
Jamieson, Nigel B. ;
Gall, Tamara M. H. ;
Giovannetti, Elisa ;
Funel, Niccola ;
Prado, Mireia Mato ;
Krell, Daniel ;
Habib, Nagy A. ;
Castellano, Leandro ;
Jiao, Long R. ;
Stebbing, Justin .
EUROPEAN JOURNAL OF CANCER, 2015, 51 (11) :1389-1404
[4]   Transcriptional analysis of the PTEN/MMAC1 pseudogene, ΨPTEN [J].
Fujii, GH ;
Morimoto, AM ;
Berson, AE ;
Bolen, JB .
ONCOGENE, 1999, 18 (09) :1765-1769
[5]   Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs [J].
Gu, Shuo ;
Jin, Lan ;
Zhang, Feijie ;
Sarnow, Peter ;
Kay, Mark A. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (02) :144-150
[6]   Profiling of circulating microRNAs for prostate cancer biomarker discovery [J].
Haldrup, Christa ;
Kosaka, Nobuyoshi ;
Ochiya, Takahiro ;
Borre, Michael ;
Hoyer, Soren ;
Orntoft, Torben F. ;
Sorensen, Karina D. .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2014, 4 (01) :19-30
[7]   Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability [J].
Harrison, PM ;
Zheng, DY ;
Zhang, ZL ;
Carriero, N ;
Gerstein, M .
NUCLEIC ACIDS RESEARCH, 2005, 33 (08) :2374-2383
[8]  
Mahdavinezhad A, 2015, INT J MOL CELL MED, V4, P32
[9]   Long non-coding RNAs: insights into functions [J].
Mercer, Tim R. ;
Dinger, Marcel E. ;
Mattick, John S. .
NATURE REVIEWS GENETICS, 2009, 10 (03) :155-159
[10]   Pseudogenes: Pseudo-functional or key regulators in health and disease? [J].
Pink, Ryan Charles ;
Wicks, Kate ;
Caley, Daniel Paul ;
Punch, Emma Kathleen ;
Jacobs, Laura ;
Carter, David Raul Francisco .
RNA, 2011, 17 (05) :792-798