Controlling Charge Separation and Recombination Rates in CdSe/ZnS Type I Core-Shell Quantum Dots by Shell Thicknesses

被引:411
作者
Zhu, Haiming [1 ]
Song, Nianhui [1 ]
Lian, Tianquan [1 ]
机构
[1] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
ULTRAFAST ELECTRON-TRANSFER; CDSE/CDS CORE/SHELL NANOCRYSTALS; MULTIPLE EXCITON GENERATION; HIGHLY LUMINESCENT CDSE; CARRIER-MULTIPLICATION; SEMICONDUCTOR NANOCRYSTALS; INJECTION DYNAMICS; SOLAR-CELLS; KINETICS; ENERGY;
D O I
10.1021/ja106710m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Type I core/shell quantum dots (QDs) have been shown to improve the stability and conversion efficiency of QD-sensitized solar cells compared to core only QDs. To understand how the shell thickness affects the solar cell performance, its effects on interfacial charge separation and recombination kinetics are investigated. These kinetics are measured in CdSe/ZnS type I core/shell QDs adsorbed with anthroquinone molecules (as electron acceptor) by time-resolved transient absorption spectroscopy. We show that the charge separation and recombination rates decrease exponentially with the shell thickness (d), K(d) = k(0)e(-beta d), with exponential decay factors beta of 0.35 +/- 0.03 per angstrom and 0.91 +/- 0.14 per angstrom, respectively. Model calculations show that these trends can be attributed to the exponential decrease of the 1S electron and hole densities at the OD surface with the shell thickness. The much steeper decrease in charge recombination rate results from a larger hole effective mass (than electron) in the ZnS shell. This finding suggests possible ways of optimizing the charge separation yield and lifetime by controlling the thickness and nature of the shell materials.
引用
收藏
页码:15038 / 15045
页数:8
相关论文
共 74 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface [J].
Anderson, NA ;
Lian, TQ .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2005, 56 :491-519
[3]   Bridge-assisted ultrafast interfacial electron transfer to nanocrystalline SnO2 thin films [J].
Anderson, NA ;
Ai, X ;
Chen, DT ;
Mohler, DL ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14231-14239
[4]   Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film [J].
Asbury, JB ;
Anderson, NA ;
Hao, EC ;
Ai, X ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7376-7386
[5]   Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells [J].
Barea, Eva M. ;
Shalom, Menny ;
Gimenez, Sixto ;
Hod, Idan ;
Mora-Sero, Ivan ;
Zaban, Arie ;
Bisquert, Juan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (19) :6834-6839
[6]   On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell1/shell2 quantum dots [J].
Ben-Lulu, Meirav ;
Mocatta, David ;
Bonn, Mischa ;
Banin, Uri ;
Ruhman, Sanford .
NANO LETTERS, 2008, 8 (04) :1207-1211
[7]  
Berger L I, 1997, SEMICONDUCTOR MAT
[8]   Ultrafast charge separation at CdS quantum dot/rhodamine B molecule interface [J].
Boulesbaa, Abdelaziz ;
Issac, Abey ;
Stockwell, Dave ;
Huang, Zhuangqun ;
Huang, Jier ;
Guo, Jianchang ;
Lian, Tianquan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (49) :15132-+
[9]   Competition between Energy and Electron Transfer from CdSe QDs to Adsorbed Rhodamine B [J].
Boulesbaa, Abdelaziz ;
Huang, Zhuangqun ;
Wu, David ;
Lian, Tianquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (02) :962-969
[10]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016