Testing Impact Measures in Spatial Autoregressive Models

被引:14
作者
Arbia, Giuseppe [1 ]
Bera, Anil K. [2 ]
Dogan, Osman [2 ]
Taspinar, Suleyman [3 ]
机构
[1] Catholic Univ Sacred Hearth, Largo Gemelli 1, I-20123 Milan, Italy
[2] Univ Illinois, Dept Econ, Champaign, IL USA
[3] CUNY, Queens Coll, Dept Econ, New York, NY 10021 USA
关键词
spatial econometric models; spatial autoregressive models; impact measures; asymptotic approximation; standard errors; inference; MLE; direct effects; indirect effects; total effects; ESTIMATORS;
D O I
10.1177/0160017619826264
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Researchers often make use of linear regression models in order to assess the impact of policies on target outcomes. In a correctly specified linear regression model, the marginal impact is simply measured by the linear regression coefficient. However, when dealing with both synchronic and diachronic spatial data, the interpretation of the parameters is more complex because the effects of policies extend to the neighboring locations. Summary measures have been suggested in the literature for the cross-sectional spatial linear regression models and spatial panel data models. In this article, we compare three procedures for testing the significance of impact measures in the spatial linear regression models. These procedures include (i) the estimating equation approach, (ii) the classical delta method, and (iii) the simulation method. In a Monte Carlo study, we compare the finite sample properties of these procedures.
引用
收藏
页码:40 / 75
页数:36
相关论文
共 26 条
[1]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[2]  
[Anonymous], 1994, handbook of econometrics
[3]  
Arbia G., 2014, A Primer for Spatial Econometrics. Palgrave text in Econometrics, DOI 10.1057/9781137317940
[4]   A SPATIAL CLIFF-ORD-TYPE MODEL WITH HETEROSKEDASTIC INNOVATIONS: SMALL AND LARGE SAMPLE RESULTS [J].
Arraiz, Irani ;
Drukker, David M. ;
Kelejian, Harry H. ;
Prucha, Ingmar R. .
JOURNAL OF REGIONAL SCIENCE, 2010, 50 (02) :592-614
[5]   Interpreting dynamic space-time panel data models [J].
Debarsy, Nicolas ;
Ertur, Cem ;
LeSage, James P. .
STATISTICAL METHODOLOGY, 2012, 9 (1-2) :158-171
[6]   Matlab Software for Spatial Panels [J].
Elhorst, J. Paul .
INTERNATIONAL REGIONAL SCIENCE REVIEW, 2014, 37 (03) :389-405
[7]  
Elhorst JP, 2014, SPRINGERBR REG SCI, P37, DOI 10.1007/978-3-642-40340-8_3
[8]   On model specification and parameter space definitions in higher order spatial econometric models [J].
Elhorst, J. Paul ;
Lacombe, Donald J. ;
Piras, Gianfranco .
REGIONAL SCIENCE AND URBAN ECONOMICS, 2012, 42 (1-2) :211-220
[9]   Applied Spatial Econometrics: Raising the Bar [J].
Elhorst, J. Paul .
SPATIAL ECONOMIC ANALYSIS, 2010, 5 (01) :9-28
[10]   A spatial modelling approach to contagion among emerging economies [J].
Kelejian, Harry H. ;
Tavlas, George S. ;
Hondroyiannis, George .
OPEN ECONOMIES REVIEW, 2006, 17 (4-5) :423-441