Smooth positon solutions of the focusing modified Korteweg-de Vries equation

被引:66
作者
Xing, Qiuxia [1 ]
Wu, Zhiwei [1 ]
Mihalache, Dumitru [2 ]
He, Jingsong [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, POB MG-6, Magurele 077125, Romania
关键词
Real mKdV equation; Darboux transformation; Soliton solution; Positon solution; Decomposition technique; Trajectory; Phase shift; PARTIAL-DIFFERENTIAL-EQUATIONS; ACOUSTIC SOLITARY WAVES; NONLINEAR-OPTICAL MEDIA; MULTIPLE-POLE SOLUTIONS; MODIFIED KDV EQUATION; BACKLUND-TRANSFORMATIONS; PAINLEVE PROPERTY; DEVRIES EQUATION; CYCLE SOLITONS; GAP-SOLITON;
D O I
10.1007/s11071-017-3579-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The n-fold Darboux transformation Tn of the focusing real modified Korteweg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n-soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues lambda(j) and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n-positon solutions of the focusing mKdV equation are obtained in the special limit lambda(j) -> lambda(1), from the corresponding n-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n-positon solution into n single-soliton solutions, the trajectories, and the corresponding "phase shifts" of the multi-positons are also investigated.
引用
收藏
页码:2299 / 2310
页数:12
相关论文
共 73 条
[61]   EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION [J].
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 32 (06) :1681-+
[62]   MULTIPLE-POLE SOLUTIONS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION [J].
WADATI, M ;
OHKUMA, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (06) :2029-2035
[63]   MODIFIED KORTEWEG-DEVRIES EQUATION [J].
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 34 (05) :1289-1296
[64]   PROPAGATION OF ION-ACOUSTIC SOLITARY WAVES OF SMALL AMPLITUDE [J].
WASHIMI, H ;
TANIUTI, T .
PHYSICAL REVIEW LETTERS, 1966, 17 (19) :996-&
[65]   ION-ACOUSTIC SOLITON IN PLASMA WITH NEGATIVE-ION [J].
WATANABE, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (03) :950-956
[66]   An extended modified KdV equation and its Painlev, integrability [J].
Wazwaz, Abdul-Majid ;
Xu, Gui-qiong .
NONLINEAR DYNAMICS, 2016, 86 (03) :1455-1460
[67]  
Wazwaz AM, 2016, NONLINEAR DYNAM, V83, P1529, DOI 10.1007/s11071-015-2427-0
[68]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
WEISS, J ;
TABOR, M ;
CARNEVALE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :522-526
[69]   Painleve property and conservation laws of multi-component mKdV equations [J].
Yao, RX ;
Qu, CZ ;
Li, ZB .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :723-730
[70]   HAMILTONIAN-FORMULATION OF THE INVERSE SCATTERING METHOD OF THE MODIFIED KDV EQUATION UNDER THE NON-VANISHING BOUNDARY-CONDITION U(X,T)-]BASX-]+/-INFINITY [J].
YEUNG, TCA ;
FUNG, PCW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (18) :3575-3592