Smooth positon solutions of the focusing modified Korteweg-de Vries equation

被引:66
作者
Xing, Qiuxia [1 ]
Wu, Zhiwei [1 ]
Mihalache, Dumitru [2 ]
He, Jingsong [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, POB MG-6, Magurele 077125, Romania
关键词
Real mKdV equation; Darboux transformation; Soliton solution; Positon solution; Decomposition technique; Trajectory; Phase shift; PARTIAL-DIFFERENTIAL-EQUATIONS; ACOUSTIC SOLITARY WAVES; NONLINEAR-OPTICAL MEDIA; MULTIPLE-POLE SOLUTIONS; MODIFIED KDV EQUATION; BACKLUND-TRANSFORMATIONS; PAINLEVE PROPERTY; DEVRIES EQUATION; CYCLE SOLITONS; GAP-SOLITON;
D O I
10.1007/s11071-017-3579-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The n-fold Darboux transformation Tn of the focusing real modified Korteweg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n-soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues lambda(j) and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n-positon solutions of the focusing mKdV equation are obtained in the special limit lambda(j) -> lambda(1), from the corresponding n-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n-positon solution into n single-soliton solutions, the trajectories, and the corresponding "phase shifts" of the multi-positons are also investigated.
引用
收藏
页码:2299 / 2310
页数:12
相关论文
共 73 条
[11]  
Frantzeskakis DJ, 2014, ROM J PHYS, V59, P767
[12]  
Gardner C. S., 1960, TID6184MF2
[13]   Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system [J].
Ge, HX ;
Dai, SQ ;
Xue, Y ;
Dong, LY .
PHYSICAL REVIEW E, 2005, 71 (06)
[14]   Parametric envelope solitons in coupled Korteweg de Vries equations [J].
Gottwald, G ;
Grimshaw, R ;
Malomed, B .
PHYSICS LETTERS A, 1997, 227 (1-2) :47-54
[15]   GAP-SOLITON HUNT IN A COUPLED KORTEWEG-DE VRIES SYSTEM [J].
GRIMSHAW, R ;
MALOMED, BA ;
TIAN, X .
PHYSICS LETTERS A, 1995, 201 (04) :285-292
[16]   NEW-TYPE OF GAP SOLITON IN A COUPLED KORTEWEG-DE VRIES WAVE SYSTEM [J].
GRIMSHAW, R ;
MADOMED, BA .
PHYSICAL REVIEW LETTERS, 1994, 72 (07) :949-953
[17]   Generating mechanism for higher-order rogue waves [J].
He, J. S. ;
Zhang, H. R. ;
Wang, L. H. ;
Porsezian, K. ;
Fokas, A. S. .
PHYSICAL REVIEW E, 2013, 87 (05)
[18]   Few-cycle optical rogue waves: Complex modified Korteweg-de Vries equation [J].
He, Jingsong ;
Wang, Lihong ;
Li, Linjing ;
Porsezian, K. ;
Erdelyi, R. .
PHYSICAL REVIEW E, 2014, 89 (06)
[20]   Interactions between polarized soliton pulses in optical fibers: Exact solutions [J].
Karlsson, M ;
Kaup, DJ ;
Malomed, BA .
PHYSICAL REVIEW E, 1996, 54 (05) :5802-5808