Smooth positon solutions of the focusing modified Korteweg-de Vries equation

被引:66
作者
Xing, Qiuxia [1 ]
Wu, Zhiwei [1 ]
Mihalache, Dumitru [2 ]
He, Jingsong [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, POB MG-6, Magurele 077125, Romania
关键词
Real mKdV equation; Darboux transformation; Soliton solution; Positon solution; Decomposition technique; Trajectory; Phase shift; PARTIAL-DIFFERENTIAL-EQUATIONS; ACOUSTIC SOLITARY WAVES; NONLINEAR-OPTICAL MEDIA; MULTIPLE-POLE SOLUTIONS; MODIFIED KDV EQUATION; BACKLUND-TRANSFORMATIONS; PAINLEVE PROPERTY; DEVRIES EQUATION; CYCLE SOLITONS; GAP-SOLITON;
D O I
10.1007/s11071-017-3579-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The n-fold Darboux transformation Tn of the focusing real modified Korteweg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n-soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues lambda(j) and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n-positon solutions of the focusing mKdV equation are obtained in the special limit lambda(j) -> lambda(1), from the corresponding n-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n-positon solution into n single-soliton solutions, the trajectories, and the corresponding "phase shifts" of the multi-positons are also investigated.
引用
收藏
页码:2299 / 2310
页数:12
相关论文
共 73 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   FOCUSING mKdV BREATHER SOLUTIONS WITH NONVANISHING BOUNDARY CONDITION BY THE INVERSE SCATTERING METHOD [J].
Alejo, Miguel A. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (01) :119-135
[3]   POSITRON SOLUTIONS OF THE SINE-GORDON EQUATION [J].
BEUTLER, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :3098-3109
[4]  
Chen SH, 2016, ROM REP PHYS, V68, P1407
[5]   Positon-like solutions of nonlinear evolution equations in (2+1) dimensions [J].
Chow, KW ;
Lai, WC ;
Shek, CK ;
Tso, K .
CHAOS SOLITONS & FRACTALS, 1998, 9 (11) :1901-1912
[6]   Periodic and rational solutions of modified Korteweg-de Vries equation [J].
Chowdury, Amdad ;
Ankiewicz, Adrian ;
Akhmediev, Nail .
EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05) :1-7
[7]  
Drinfeld V.G., 1985, SOV J MATH, V30, P1975
[8]   On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation [J].
Dubard, P. ;
Gaillard, P. ;
Klein, C. ;
Matveev, V. B. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :247-258
[9]   Dust-ion-acoustic solitary waves in a hot magnetized dusty plasma with charge fluctuations [J].
El-Shamy, EF .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :665-674
[10]   Symmetry breaking in linearly coupled Korteweg-de Vries systems [J].
Espinosa-Ceron, A. ;
Malomed, B. A. ;
Fujioka, J. ;
Rodriguez, R. F. .
CHAOS, 2012, 22 (03)