Smooth positon solutions of the focusing modified Korteweg-de Vries equation

被引:58
|
作者
Xing, Qiuxia [1 ]
Wu, Zhiwei [1 ]
Mihalache, Dumitru [2 ]
He, Jingsong [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, POB MG-6, Magurele 077125, Romania
关键词
Real mKdV equation; Darboux transformation; Soliton solution; Positon solution; Decomposition technique; Trajectory; Phase shift; PARTIAL-DIFFERENTIAL-EQUATIONS; ACOUSTIC SOLITARY WAVES; NONLINEAR-OPTICAL MEDIA; MULTIPLE-POLE SOLUTIONS; MODIFIED KDV EQUATION; BACKLUND-TRANSFORMATIONS; PAINLEVE PROPERTY; DEVRIES EQUATION; CYCLE SOLITONS; GAP-SOLITON;
D O I
10.1007/s11071-017-3579-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The n-fold Darboux transformation Tn of the focusing real modified Korteweg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n-soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues lambda(j) and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n-positon solutions of the focusing mKdV equation are obtained in the special limit lambda(j) -> lambda(1), from the corresponding n-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n-positon solution into n single-soliton solutions, the trajectories, and the corresponding "phase shifts" of the multi-positons are also investigated.
引用
收藏
页码:2299 / 2310
页数:12
相关论文
共 50 条
  • [1] Smooth positon solutions of the focusing modified Korteweg–de Vries equation
    Qiuxia Xing
    Zhiwei Wu
    Dumitru Mihalache
    Jingsong He
    Nonlinear Dynamics, 2017, 89 : 2299 - 2310
  • [2] New Positon, Negaton, and Complexiton Solutions for a Coupled Korteweg-de Vries - Modified Korteweg-de Vries System
    Hu, Hengchun
    Yang, Mingyuan
    Zhang, Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (6-7): : 347 - 354
  • [3] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [5] Exact solutions of the modified Korteweg-de Vries equation
    F. Demontis
    Theoretical and Mathematical Physics, 2011, 168 : 886 - 897
  • [6] Exact solutions for modified Korteweg-de Vries equation
    Sarma, Jnanjyoti
    CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1599 - 1603
  • [7] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [8] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [9] New type of solutions for the modified Korteweg-de Vries equation
    Liu, Xing-yu
    Lu, Bin-he
    Zhang, Da-jun
    APPLIED MATHEMATICS LETTERS, 2025, 159
  • [10] Periodic and rational solutions of modified Korteweg-de Vries equation
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05): : 1 - 7