A New Inertial Subgradient Extragradient method for Solving Quasimonotone Variational Inequalities

被引:0
作者
Rehman, Habib Ur [1 ]
Kumam, Wiyada [2 ]
Sombut, Kamonrat [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Dept Math & Comp Sci, Fac Sci & Technol,Program Appl Stat, Thanyaburi 12110, Pathumthani, Thailand
[3] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Fac Sci & Technol, Dept Math & Comp Sci, Thanyaburi 12110, Pathumthani, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
Variational inequality problem; Subgradient extragradient method; Weak convergence result; Quasimonotone operator; Lipschitz continuity; PSEUDOMONOTONE EQUILIBRIUM PROBLEMS; WEAK-CONVERGENCE; FIXED-POINTS; REAL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to study the numerical solution of variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges weakly to the solution. The main advantage of the proposed iterative scheme is that it employs an inertial scheme and a monotone stepsize rule based on operator knowledge rather than a Lipschitz constant or another line search method. Numerical results show that the proposed algorithm is effective for solving quasimonotone variational inequalities.?
引用
收藏
页码:981 / 992
页数:12
相关论文
共 50 条
  • [41] Subgradient extragradient method with double inertial steps for quasi-monotone variational inequalities
    Li, Haiying
    Wang, Xingfang
    [J]. FILOMAT, 2023, 37 (29) : 9823 - 9844
  • [42] FURTHER STUDY ON THE INERTIAL TWO-SUBGRADIENT EXTRAGRADIENT METHOD FOR MONOTONE VARIATIONAL INEQUALITIES
    Cao, Yu
    Guo, Ke
    Zhao, Shilian
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (10) : 2225 - 2236
  • [43] A Subgradient Extragradient Framework Incorporating a Relaxation and Dual Inertial Technique for Variational Inequalities
    Rehman, Habib ur
    Sitthithakerngkiet, Kanokwan
    Seangwattana, Thidaporn
    [J]. MATHEMATICS, 2025, 13 (01)
  • [44] Modified subgradient extragradient algorithms for solving monotone variational inequalities
    Yang, Jun
    Liu, Hongwei
    Liu, Zexian
    [J]. OPTIMIZATION, 2018, 67 (12) : 2247 - 2258
  • [45] Convergence of a subgradient extragradient algorithm for solving monotone variational inequalities
    Yang, Jun
    Liu, Hongwei
    Li, Guaiwei
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (01) : 389 - 405
  • [46] Convergence of a subgradient extragradient algorithm for solving monotone variational inequalities
    Jun Yang
    Hongwei Liu
    Guaiwei Li
    [J]. Numerical Algorithms, 2020, 84 : 389 - 405
  • [47] Inertial subgradient extragradient method for solving pseudomonotone variational inequality problems in Banach spaces
    Peng, Zai-Yun
    Peng, Zhi-Ying
    Cai, Gang
    Li, Gao-Xi
    [J]. APPLICABLE ANALYSIS, 2024, 103 (10) : 1769 - 1789
  • [48] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    [J]. Acta Applicandae Mathematicae, 2020, 170 : 319 - 345
  • [49] Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces
    Rapeepan Kraikaew
    Satit Saejung
    [J]. Journal of Optimization Theory and Applications, 2014, 163 : 399 - 412
  • [50] THE TSENG'S EXTRAGRADIENT METHOD FOR SEMISTRICTLY QUASIMONOTONE VARIATIONAL INEQUALITIES
    Ur Rehman H.
    Özdemir M.
    Karahan I.
    Wairojjana N.
    [J]. Journal of Applied and Numerical Optimization, 2022, 4 (02): : 203 - 214