A New Inertial Subgradient Extragradient method for Solving Quasimonotone Variational Inequalities

被引:0
|
作者
Rehman, Habib Ur [1 ]
Kumam, Wiyada [2 ]
Sombut, Kamonrat [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Dept Math & Comp Sci, Fac Sci & Technol,Program Appl Stat, Thanyaburi 12110, Pathumthani, Thailand
[3] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Fac Sci & Technol, Dept Math & Comp Sci, Thanyaburi 12110, Pathumthani, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
Variational inequality problem; Subgradient extragradient method; Weak convergence result; Quasimonotone operator; Lipschitz continuity; PSEUDOMONOTONE EQUILIBRIUM PROBLEMS; WEAK-CONVERGENCE; FIXED-POINTS; REAL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to study the numerical solution of variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges weakly to the solution. The main advantage of the proposed iterative scheme is that it employs an inertial scheme and a monotone stepsize rule based on operator knowledge rather than a Lipschitz constant or another line search method. Numerical results show that the proposed algorithm is effective for solving quasimonotone variational inequalities.?
引用
收藏
页码:981 / 992
页数:12
相关论文
共 50 条
  • [21] A RELAXED INERTIAL FACTOR OF THE MODIFIED SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDO MONOTONE VARIATIONAL INEQUALITIES IN HILBERT SPACES
    Duong Viet THONG
    Vu Tien DUNG
    Acta Mathematica Scientia, 2023, 43 (01) : 184 - 204
  • [22] Convergence of Relaxed Inertial Subgradient Extragradient Methods for Quasimonotone Variational Inequality Problems
    G. N. Ogwo
    C. Izuchukwu
    Y. Shehu
    O. T. Mewomo
    Journal of Scientific Computing, 2022, 90
  • [23] Convergence analysis of subgradient extragradient method with inertial technique for solving variational inequalities and fixed point problems
    Guo, Danni
    Cai, Gang
    Tan, Bing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 148
  • [24] Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities
    Yang, Jun
    APPLICABLE ANALYSIS, 2021, 100 (05) : 1067 - 1078
  • [25] Strong convergence of subgradient extragradient method with regularization for solving variational inequalities
    Dang Van Hieu
    Pham Ky Anh
    Le Dung Muu
    Optimization and Engineering, 2021, 22 : 2575 - 2602
  • [26] Convergence of Relaxed Inertial Subgradient Extragradient Methods for Quasimonotone Variational Inequality Problems
    Ogwo, G. N.
    Izuchukwu, C.
    Shehu, Y.
    Mewomo, O. T.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [27] Strong convergence of subgradient extragradient method with regularization for solving variational inequalities
    Hieu, Dang Van
    Anh, Pham Ky
    Muu, Le Dung
    OPTIMIZATION AND ENGINEERING, 2021, 22 (04) : 2575 - 2602
  • [28] Inertial subgradient extragradient with projection method for solving variational inequality and fixed point problems
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AIMS MATHEMATICS, 2023, 8 (12): : 30102 - 30119
  • [29] Strong convergence of inertial subgradient extragradient method for solving variational inequality in Banach space
    Khan, A. R.
    Ugwunnadi, G. C.
    Makukula, Z. G.
    Abbas, M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) : 327 - 338
  • [30] Modified subgradient extragradient method to solve variational inequalities
    Muangchoo, Kanikar
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 25 (02): : 133 - 149