Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry

被引:98
作者
Pruttivarasin, T. [1 ,2 ]
Ramm, M. [1 ]
Porsev, S. G. [3 ,4 ]
Tupitsyn, I. I. [5 ]
Safronova, M. S. [3 ,6 ,7 ]
Hohensee, M. A. [1 ,8 ]
Haeffner, H. [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] RIKEN, Quantum Metrol Lab, Wako, Saitama 3510198, Japan
[3] Univ Delaware, Dept Phys & Astron, Newark, DC 19716 USA
[4] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Distr, Russia
[5] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
[6] NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[7] Univ Maryland, College Pk, MD 20742 USA
[8] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
INERTIAL MASS; INVARIANCE; VIOLATION; ANISOTROPY; CPT;
D O I
10.1038/nature14091
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light(1-3). For matter, Hughes-Drever-type experiments(4-11) test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropies in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions(12). After a 23-hour measurement, we find a limit of h x 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10(18), a 100-fold improvement on previous work(9). Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropies in the speed of light(2,3). Our result probes Lorentz symmetry violation at levels comparable to the ratio between the electroweak and Planck energy scales(13). Our experiment demonstrates the potential of quantum information techniques in the search for physics beyond the standard model.
引用
收藏
页码:592 / U357
页数:10
相关论文
共 41 条
[1]   New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer [J].
Allmendinger, F. ;
Heil, W. ;
Karpuk, S. ;
Kilian, W. ;
Scharth, A. ;
Schmidt, U. ;
Schnabel, A. ;
Sobolev, Yu. ;
Tullney, K. .
PHYSICAL REVIEW LETTERS, 2014, 112 (11)
[2]   Limits on Lorentz violation from synchrotron and inverse Compton sources [J].
Altschul, B. .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)
[3]   Testing electron boost invariance with 2S-1S hydrogen spectroscopy [J].
Altschul, Brett .
PHYSICAL REVIEW D, 2010, 81 (04)
[4]   Lorentz-violating electrostatics and magnetostatics [J].
Bailey, QG ;
Kostelecky, VA .
PHYSICAL REVIEW D, 2004, 70 (07)
[5]   Optical Clocks and Relativity [J].
Chou, C. W. ;
Hume, D. B. ;
Rosenband, T. ;
Wineland, D. J. .
SCIENCE, 2010, 329 (5999) :1630-1633
[6]   Precision spectroscopy with two correlated atoms [J].
Chwalla, M. ;
Kim, K. ;
Monz, T. ;
Schindler, P. ;
Riebe, M. ;
Roos, C. F. ;
Blatt, R. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 89 (04) :483-488
[7]   Lorentz-violating extension of the standard model [J].
Colladay, D ;
Kostelecky, VA .
PHYSICAL REVIEW D, 1998, 58 (11)
[8]   CPT violation and the standard model [J].
Colladay, D ;
Kostelecky, VA .
PHYSICAL REVIEW D, 1997, 55 (11) :6760-6774
[9]   A SEARCH FOR ANISOTROPY OF INERTIAL MASS USING A FREE PRECESSION TECHNIQUE [J].
DREVER, RWP .
PHILOSOPHICAL MAGAZINE, 1961, 6 (65) :683-+
[10]   Laboratory Test of the Isotropy of Light Propagation at the 10-17 Level [J].
Eisele, Ch. ;
Nevsky, A. Yu. ;
Schiller, S. .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)