Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Pineapple

被引:12
作者
He, Qing [1 ,2 ,3 ]
Liu, Yanhui [1 ,2 ]
Zhang, Man [1 ,2 ,3 ]
Bai, Mengyan [1 ,2 ]
Priyadarshani, S. V. G. N. [1 ,2 ]
Chai, Mengnan [1 ,2 ,3 ]
Chen, Fangqian [1 ,2 ]
Huang, Youmei [1 ,2 ,3 ]
Liu, Liping [1 ,2 ]
Cai, Hanyang [1 ,2 ,4 ]
Qin, Yuan [1 ,2 ,4 ]
机构
[1] Fujian Agr & Forestry Univ, State Key Lab Ecol Pest Control Fujian & Taiwan C, Coll Life Sci, Ctr Genom & Biotechnol, Fuzhou 350002, Fujian, Peoples R China
[2] Fujian Agr & Forestry Univ, Fujian Prov Key Lab Haixia Appl Plant Syst Biol, Coll Life Sci, Ctr Genom & Biotechnol, Fuzhou 350002, Fujian, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Plant Protect, Fuzhou 350002, Fujian, Peoples R China
[4] Guangxi Univ, Coll Agr, State Key Lab Conservat & Utilizat Subtrop Agrobi, Guangxi Key Lab Sugarcane Biol, Nanning 530004, Guangxi, Peoples R China
关键词
NAC; Transcription factors; Pineapple; Gene structure; Expression profiles; FACTOR GENE FAMILY; NO-APICAL-MERISTEM; COMPREHENSIVE ANALYSIS; FUNCTIONAL-ANALYSIS; ORYZA-SATIVA; PROTEIN; SALT; DOMAIN; RESISTANCE; DEFENSE;
D O I
10.1007/s12042-019-09233-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
NAC [no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2) and cup-shaped cotyledon (CUC2)] proteins is one of the largest classes of plant specific transcription factors and plays a critical role in plant growth, development process, and abiotic/biotic stresses. In this study, 73 NAC genes (AcNACs) were identified from the pineapple genome. Phylogenetic analysis showed that AcNACs could be divided into 13 subgroups. Gene structure analysis showed that the number of introns varied from 0 to 12. Motif analysis revealed that all of the identified AcNACs had the conserved NAC domain and motif 6 is the conserved motif. Most of the AcNACs were located in chromosome except AcNAC68, AcNAC70, AcNAC71 and AcNAC72, which were presented on unanchored scaffolds. Furthermore, we analysed AcNAC expression patterns in vegetative organs and in sexual organs, namely ovules and stamens, at different developmental stages respectively. Five AcNAC genes (AcNAC6; AcNAC7; AcNAC48; AcNAC70; AcNAC71) were not detected in vegetative organs. AcNAC55 exhibited the highest expression level in vegetative organs. Six AcNAC genes (AcNAC11, AcNAC18, AcNAC27, AcNAC28, AcNAC40, and AcNAC55) showed high expression levels in all reproductive organs. Seven AcNAC genes (AcNAC26, AcNAC34, AcNAC40, AcNAC43, AcNAC63 and AcNAC65) were induced under abiotic stresses. These data provided a new insight of NAC gene family in pineapple and revealed the diverse function of NAC transcription factors in pineapple growth and development.
引用
收藏
页码:255 / 267
页数:13
相关论文
共 50 条
  • [31] Genome-Wide Investigation of the NAC Transcription Factor Family in Miscanthus sinensis and Expression Analysis Under Various Abiotic Stress
    Nie, Gang
    Yang, Zhongfu
    He, Jie
    Liu, Aiyu
    Chen, Jiayi
    Wang, Shuan
    Wang, Xia
    Feng, Guangyan
    Li, Dandan
    Peng, Yan
    Huang, Linkai
    Zhang, Xinquan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [32] Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]
    Kadier, Yibadaiti
    Zu, Yi-yi
    Dai, Qing-min
    Song, Ge
    Lin, Shi-wen
    Sun, Qing-peng
    Pan, Jin-bao
    Lu, Min
    PLANT GROWTH REGULATION, 2017, 83 (02) : 301 - 312
  • [33] Genome-Wide Characterization and Comprehensive Analysis of NAC Transcription Factor Family in Nelumbo nucifera
    Song, Heyun
    Liu, Yanling
    Dong, Gangqiang
    Zhang, Minghua
    Wang, Yuxin
    Xin, Jia
    Su, Yanyan
    Sun, Heng
    Yang, Mei
    FRONTIERS IN GENETICS, 2022, 13
  • [34] Genome-wide identification and expression analysis of MYB transcription factor family in Rosa persica
    Jiang, Lv
    Feng, Ceting
    Liu, Xinying
    Xiong, Keying
    Sui, Yunji
    Guo, Runhua
    Zhang, Qixiang
    Pan, Huitang
    Yu, Chao
    Luo, Le
    GENETIC RESOURCES AND CROP EVOLUTION, 2025, 72 (03) : 3183 - 3202
  • [35] Genome-wide identification and characterization of greenbug-inducible NAC transcription factors in sorghum
    Zhang, Hengyou
    Huang, Yinghua
    MOLECULAR BIOLOGY REPORTS, 2024, 51 (01)
  • [36] Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage
    Song, Xiaoming
    Liu, Gaofeng
    Duan, Weike
    Liu, Tongkun
    Huang, Zhinan
    Ren, Jun
    Li, Ying
    Hou, Xilin
    MOLECULAR GENETICS AND GENOMICS, 2014, 289 (04) : 541 - 551
  • [37] Genome-Wide Identification and Expression Profiling of the SPL Transcription Factor Family in Response to Abiotic Stress in Centipedegrass
    Kong, Dandan
    Xu, Maotao
    Liu, Siyu
    Liu, Tianqi
    Liu, Boyang
    Wang, Xiaoyun
    Dong, Zhixiao
    Ma, Xiao
    Zhao, Junming
    Lei, Xiong
    PLANTS-BASEL, 2025, 14 (01):
  • [38] Genome-wide investigation and analysis of NAC transcription factor family in Populus tomentosa and expression analysis under salt stress
    Han, K.
    Zhao, Y.
    Liu, J.
    Tian, Y.
    El-Kassaby, Y. A.
    Qi, Y.
    Ke, M.
    Sun, Y.
    Li, Y.
    PLANT BIOLOGY, 2024, 26 (05) : 764 - 776
  • [39] Genome-Wide Identification, Characterization, and Expression Analysis of the NAC Gene Family in Litchi chinensis
    Liao, Guihua
    Duan, Yu
    Wang, Congcong
    Zhuang, Zebin
    Wang, Haishi
    GENES, 2023, 14 (07)
  • [40] Genome-wide identification and expression analysis of the WRKY transcription factor family in flax (Linum usitatissimum L.)
    Yuan, Hongmei
    Guo, Wendong
    Zhao, Lijuan
    Yu, Ying
    Chen, Si
    Tao, Lei
    Cheng, Lili
    Kang, Qinghua
    Song, Xixia
    Wu, Jianzhong
    Yao, Yubo
    Huang, Wengong
    Wu, Ying
    Liu, Yan
    Yang, Xue
    Wu, Guangwen
    BMC GENOMICS, 2021, 22 (01)