Design and development of hybrid composite bistable structures for energy absorption under quasi-static tensile loading

被引:44
作者
Winkelmann, Charles [1 ]
Kim, Samuel S. [1 ]
La Saponara, Valeria [1 ]
机构
[1] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Bistable; Composite; Damage tolerance; Carbon; Polyethylene; MECHANICAL-BEHAVIOR; FIBER COMPOSITES; POLYETHYLENE; CARBON; STRENGTH;
D O I
10.1016/j.compstruct.2010.06.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The composite bistable structures discussed in this paper consist of a material-based mechanism with a saw-tooth strain/stress curve. They have a more damage-tolerant behavior, and considerably higher strain-to-failure than the corresponding monolithic material. Past work showed successful results with bistable composites made of ultra high molecular weight polyethylene (UHMWPE). This paper investigates a number of hybrid composite configurations, with geometry and manufacturing process inspired by the previous work. Bistable designs are based on the synergy of two parts, main links and waiting links, with a user-configurable balance of strain, strength and stiffness. In this paper, carbon and UHMWPE (Spectra (R)) hybrids are studied in terms of their maximum strain and specific strain energy. Considerably higher ductility was experienced for some configurations, while increased strength may be obtained in principle with a higher number of layers than those of the current work. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 25 条
[1]  
Abrate Serge., 1998, IMPACT COMPOSITE STR, DOI 10.1017/CBO9780511574504
[2]   A strain-rate dependent 3-D micromechanical model for finite element simulations of plain weave composite structures [J].
Aminjikarai, S. Babu ;
Tabiei, Ala .
COMPOSITE STRUCTURES, 2007, 81 (03) :407-418
[3]   Mechanism of Translaminar Fracture in Glass/Textile Fabric Polymer Hybrid Composites [J].
Arun, K. V. ;
Kamat, Raghavendra Dilip ;
Basavarajappa, S. .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2010, 29 (02) :254-265
[4]   Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results [J].
Cao, J. ;
Akkerman, R. ;
Boisse, P. ;
Chen, J. ;
Cheng, H. S. ;
de Graaf, E. F. ;
Gorczyca, J. L. ;
Harrison, P. ;
Hivet, G. ;
Launay, J. ;
Lee, W. ;
Liu, L. ;
Lomov, S. V. ;
Long, A. ;
de Luycker, E. ;
Morestin, F. ;
Padvoiskis, J. ;
Peng, X. Q. ;
Sherwood, J. ;
Stoilova, Tz. ;
Tao, X. M. ;
Verpoest, I. ;
Willems, A. ;
Wiggers, J. ;
Yu, T. X. ;
Zhu, B. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2008, 39 (06) :1037-1053
[5]   Concepts for morphing airfoil sections using bi-stable laminated composite structures [J].
Diaconu, Cezar G. ;
Weaver, Paul M. ;
Mattioni, Filippo .
THIN-WALLED STRUCTURES, 2008, 46 (06) :689-701
[6]  
Gibson RonaldF., 2007, Principles of Composite Material Mechanics, Vsecond
[7]   Mechanical behaviour prediction in plain weave composites [J].
Guagliano, M ;
Riva, E .
JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2001, 36 (02) :153-162
[8]   EXPERIMENTAL CONFIRMATION OF THE THEORY OF ELASTIC-MODULI OF FABRIC COMPOSITES [J].
ISHIKAWA, T ;
MATSUSHIMA, M ;
HAYASHI, Y ;
CHOU, TW .
JOURNAL OF COMPOSITE MATERIALS, 1985, 19 (05) :443-458
[9]   An analytical and experimental study of strength and failure behavior of plain weave composites [J].
Ito, M ;
Chou, TW .
JOURNAL OF COMPOSITE MATERIALS, 1998, 32 (01) :2-30
[10]   A direct micromechanics method for analysis of failure initiation of plain weave textile composites [J].
Karkkainen, RL ;
Sankar, BV .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (01) :137-150