Comparative study between 1.5 and 3 Tesla multiparametric MRI systems using the PIRADS version 2 classification in the diagnosis of prostate cancer

被引:4
作者
Rodriguez Cabello, Miguel Angel [1 ]
Mendez Rubio, Santiago [1 ]
Moraga Sanz, Alvaro [1 ]
Sanz Miguelanez, Juan Luis [1 ]
Vazquez Alba, David [1 ]
Aullo Gonzalez, Carolina [2 ]
Platas Sancho, Arturo [1 ]
机构
[1] Hosp Univ La Moraleja, Serv Urol, Avda Francisco Pi y Margall 81, Madrid 28050, Spain
[2] Univ Francisco de Vitoria, Hosp Univ La Moraleja, Serv Radiodiagnost, Avda Francisco Pi y Margall 81, Madrid 28050, Spain
来源
ARCHIVOS ESPANOLES DE UROLOGIA | 2022年 / 75卷 / 04期
关键词
Multiparametric prostatic MRI (mpMRI); 1.5-Tesla; 3-Tesla; Prostate cancer; PIRADS; ACCURACY; BIOPSY;
D O I
10.56434/j.arch.esp.urol.20227504.47
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Introduction: The 3-Tesla multiparametric MRI (mpMRI) system represents a diagnostic advance for prostate cancer. Our aim is to demonstrate that the results in 1.5-Tesla mpMRI are not inferior compared to the 3-Tesla for the correct diagnosis of prostate cancer. Material and methods: Non-inferiority comparative cross-sectional study between fusion-guided prostate biopsy results. 344 patients with clinical suspicion of prostate cancer (elevated PSA and/or suspicious DRE) and mpMRI interpreted and verified by the same radiologists in all cases, 270 in 1.5-Tesla and 74 in 3-Tesla, with at least one lesion PIRADSv2 >= 3. Exclusion criteria were positive biopsy or previous prostate treatment. We consider malignancy as ISUP >= 1 and significant tumor as ISUP >= 2. We used Wilcoxon and t-student test (central tendency measures), diagnostic test (gold standard: ISUP of targeted biopsy), Chi2 test and Z-test (comparison of prevalences and 95%CI malignancy and significant tumor according to mpMRI). Results: Median prostate volume 50cc(IQR:33.5) and PSA 6.11ng/ml(IQR:3.39). Mean age 67.4 +/- 8.1years. Number of suspicious lesions/patient: mpMRI 1.3 (1.5-Tesla) and 1.5 (3-Tesla). No differences were found between mpMRI (homogeneous and comparable samples). 57% (1.5-Tesla) vs 66% (3-Tesla) of targeted biopsies were malignant, and 34%vs38% were significant tumor, with no significant differences. Se, Sp, PPV and NPV for malignancy (1.5-Tesla vs 3-Tesla) were 96%vs90%, 38%vs44%, 67%vs76%, and 86%vs69%, with no significant differences. Conclusions: There are no significant differences between 1.5-Tesla vs 3-Tesla mpMRI regarding targeted biopsy results. Not to have 3-Tesla mpMRI may not be a limitation to use 1.5-Tesla as a diagnostic test for the better diagnosis of prostate cancer.
引用
收藏
页码:330 / 338
页数:9
相关论文
共 50 条
  • [31] Diagnostic Value of Integrated PET/MRI for Detection and Localization of Prostate Cancer: Comparative Study of Multiparametric MRI and PET/CT
    Lee, Myoung Seok
    Cho, Jeong Yeon
    Kim, Sang Youn
    Cheon, Gi Jeong
    Moon, Min Hoan
    Oh, Sohee
    Lee, Joongyub
    Lee, Seunghyun
    Woo, Sungmin
    Kim, Seung Hyup
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (02) : 597 - 609
  • [32] Diagnostic evaluation and incorporation of PSA density and the prostate imaging and data reporting system (PIRADS) version 2 classification in risk-nomograms for prostate cancer
    Miguel Angel Rodríguez Cabello
    Santiago Méndez Rubio
    Arturo Platas Sancho
    Joaquin Carballido Rodríguez
    World Journal of Urology, 2022, 40 : 2439 - 2450
  • [33] Textured-Based Deep Learning in Prostate Cancer Classification with 3T Multiparametric MRI: Comparison with PI-RADS-Based Classification
    Liu, Yongkai
    Zheng, Haoxin
    Liang, Zhengrong
    Miao, Qi
    Brisbane, Wayne G.
    Marks, Leonard S.
    Raman, Steven S.
    Reiter, Robert E.
    Yang, Guang
    Sung, Kyunghyun
    DIAGNOSTICS, 2021, 11 (10)
  • [34] Radiomics Approach to the Detection of Prostate Cancer Using Multiparametric MRI: A Validation Study Using Prostate-Cancer-Tissue-Mimicking Phantoms
    Alshomrani, Faisal
    Alsaedi, Basim S. O.
    Wei, Cheng
    Szewczyk-Bieda, Magdalena
    Gandy, Stephen
    Wilson, Jennifer
    Huang, Zhihong
    Nabi, Ghulam
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [35] A 3D Voxel Neighborhood Classification Approach within a Multiparametric MRI Classifier for Prostate Cancer Detection
    Rossi, Francesco
    Savino, Alessandro
    Giannini, Valentina
    Vignati, Anna
    Mazzetti, Simone
    Benso, Alfredo
    Di Carlo, Stefano
    Politano, Gianfranco
    Regge, Daniele
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2015), PT I, 2015, 9043 : 231 - 239
  • [36] Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI
    Song, Yang
    Zhang, Yu-Dong
    Yan, Xu
    Liu, Hui
    Zhou, Minxiong
    Hu, Bingwen
    Yang, Guang
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (06) : 1570 - 1577
  • [37] Head-to-Head Comparison Between Biparametric and Multiparametric MRI for the Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis
    Woo, Sungmin
    Suh, Chong Hyun
    Kim, Sang Youn
    Cho, Jeong Yeon
    Kim, Seung Hyup
    Moon, Min Hoan
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 211 (05) : W226 - W241
  • [38] Detection and Localization of Prostate Cancer at 3-T Multiparametric MRI Using PI-RADS Segmentation
    Wibulpolprasert, Pornphan
    Raman, Steven S.
    Hsu, William
    Margolis, Daniel J. A.
    Asvadi, Nazanin H.
    Khoshnoodi, Pooria
    Moshksar, Amin
    Tan, Nelly
    Ahuia, Preeti
    Maehara, Cleo K.
    Huang, Jiaoti
    Sayre, James
    Lu, David S. K.
    Reiter, Robert E.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (06) : W122 - W131
  • [39] Prebiopsy Biparametric MRI for Clinically Significant Prostate Cancer Detection With PI-RADS Version 2: A Multicenter Study
    Choi, Moon Hyung
    Kim, Chan Kyo
    Lee, Young Joon
    Jung, Seung Eun
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (04) : 839 - 846
  • [40] The role of magnetic resonance imaging (MRI) in prostate cancer imaging and staging at 1.5 and 3 Tesla: The Beth Israel Deaconess Medical Center (BIDMC) approach
    Bloch, B. Nicolas
    Lenkinski, Robert E.
    Rofsky, Neil M.
    CANCER BIOMARKERS, 2008, 4 (4-5) : 251 - 262