Solitary waves in coupled nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities

被引:30
|
作者
Belmonte-Beitia, Juan [1 ,2 ]
Perez-Garcia, Victor M. [1 ,2 ]
Brazhnyi, Valeriy [3 ]
机构
[1] Univ Castilla La Mancha, Escuela Tecn Super Ingn Ind, Dept Matemat, E-13071 Ciudad Real, Spain
[2] Univ Castilla La Mancha, IMACI, E-13071 Ciudad Real, Spain
[3] Univ Porto, Fac Ciencias, Ctr Fis Porto, P-4169007 Oporto, Portugal
关键词
Nonlinear Schrodinger equations; Solitary waves; Bright and dark solitons; Spatially inhomogeneous nonlinearities; SOLITONS;
D O I
10.1016/j.cnsns.2010.02.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Lie group theory we construct explicit solitary wave solutions of coupled nonlinear Schrodinger systems with spatially inhomogeneous nonlinearities. We present the general theory, use it to construct different families of explicit solutions and study their linear and dynamical stability. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 172
页数:15
相关论文
共 50 条
  • [21] Inertia law for spectral stability of solitary waves in coupled nonlinear Schrodinger equations
    Pelinovsky, DE
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2055): : 783 - 812
  • [22] Solitary Waves for Linearly Coupled Nonlinear Schrödinger Equations with Inhomogeneous Coefficients
    Juan Belmonte-Beitia
    Víctor M. Pérez-García
    Pedro J. Torres
    Journal of Nonlinear Science, 2009, 19 : 437 - 451
  • [23] Orbital stability of spatially synchronized solitary waves of an m-coupled nonlinear Schrodinger system
    Liu, Chuangye
    Nguyen, Nghiem V.
    Wang, Zhi-Qiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (10)
  • [24] Exact solitary solutions of an inhomogeneous modified nonlinear Schrodinger equation with competing nonlinearities
    Kavitha, L.
    Akila, N.
    Prabhu, A.
    Kuzmanovska-Barandovska, O.
    Gopi, D.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) : 1095 - 1110
  • [25] Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schrodinger equations
    Hioe, FT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7307 - 7330
  • [26] Numerical computations for bifurcations and spectral stability of solitary waves in coupled nonlinear Schrodinger equations
    Yagasaki, Kazuyuki
    Yamazoe, Shotaro
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2022, 39 (01) : 257 - 281
  • [27] Localization phenomena in nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities: Theory and applications to Bose-Einstein condensates
    Perez-Garcia, Victor M.
    Pardo, Rosa
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) : 1352 - 1361
  • [28] On asymptotic stability of solitary waves for nonlinear Schrodinger equations
    Buslaev, VS
    Sulem, C
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03): : 419 - 475
  • [29] EXISTENCE OF SOLITARY WAVES IN NONLINEAR EQUATIONS OF SCHRODINGER TYPE
    Belmonte-Beitia, Juan
    Prytula, Vladyslav
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (05): : 1007 - 1017
  • [30] Standing waves with prescribed L2-norm to nonlinear Schrodinger equations with combined inhomogeneous nonlinearities
    Gou, Tianxiang
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 114 (01)