Identification of an output error Takagi-Sugeno model

被引:0
作者
Gasso, K [1 ]
Mourot, G [1 ]
Ragot, J [1 ]
机构
[1] CNRS, Ctr Rech Automat Nancy, UPRESA 7039, INPL,ENSEM, F-54516 Vandoeuvre Nancy, France
来源
SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5 | 2000年
关键词
non-linear dynamic system; system identification; model TS; output error; parameters pruning;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the identification of a TS model with output error local models is considered. The premise part of the TS model is assumed to be described by st lattice partition. The main problem involved is the determination of the premise variables, the associated number of modalities and the structure of the local models. The premise optimisation is solved by a forward approach and the structure of the local models are further refined using a pruning technique. The application of the overall procedure on a simulation example is reported.
引用
收藏
页码:14 / 19
页数:6
相关论文
共 7 条
  • [1] BABUSKA R, 1998, INT SERIES INTELLIGE, P144
  • [2] Boukhris A, 1999, INT J CONTROL, V72, P591, DOI 10.1080/002071799220795
  • [3] CONSTRUCTING NARMAX MODELS USING ARMAX MODELS
    JOHANSEN, TA
    FOSS, BA
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1993, 58 (05) : 1125 - 1153
  • [4] Nonlinear system input structure identification: Two stage fuzzy curves and surfaces
    Lin, YH
    Cunningham, GA
    Coggeshall, SV
    Jones, RD
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1998, 28 (05): : 678 - 684
  • [5] SHORTEN R, 1997, MULTIPLE MODEL APPRO, pCH8
  • [6] STRUCTURE IDENTIFICATION OF FUZZY MODEL
    SUGENO, M
    KANG, GT
    [J]. FUZZY SETS AND SYSTEMS, 1988, 28 (01) : 15 - 33
  • [7] MODELING AND CONTROL OF CARBON-MONOXIDE CONCENTRATION USING A NEURO-FUZZY TECHNIQUE
    TANAKA, K
    SANO, M
    WATANABE, H
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (03) : 271 - 279