The Band Gap of Graphene Is Efficiently Tuned by Monovalent Ions

被引:52
|
作者
Colherinhas, Guilherme [1 ]
Fileti, Eudes Eterno [2 ]
Chaban, Vitaly V. [2 ]
机构
[1] Univ Fed Goias, CEPAE, Dept Fis, BR-74001970 Goiania, Go, Brazil
[2] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, BR-12247014 Sao Paulo, Brazil
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2015年 / 6卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
QC-SCF METHOD; CARBON NANOTUBES; MOLECULAR-DYNAMICS; COMPOSITE FILMS; WATER; OXIDE; SUPERCAPACITORS; NANOSTRUCTURES; PERFORMANCE; ADSORPTION;
D O I
10.1021/jz502601z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Small monovalent ions are able to polarize carbonaceous nanostructures significantly. We report a systematic investigation of how monovalent and divalent ions influence valence electronic structure of graphene. Pure density functional theory is employed to compute electronic energy levels. We show that the lowest unoccupied molecular orbital (LUMO) of an alkali ion (Li+, Na+) fits between the highest occupied molecular orbital (HOMO) and LUMO of graphene, in such a way as to tune the bottom of the conduction band (i.e., band gap). In turn, Mg2+ shares its orbitals with graphene. The corresponding binding energy is ca. 4 times higher than that in the case of alkali ions. The reported insights provide inspiration for engineering electrical properties of the graphene-containing systems.
引用
收藏
页码:302 / 307
页数:6
相关论文
共 50 条
  • [41] Facile band gap tuning in graphene–brucite heterojunctions
    Gianfranco Ulian
    Giovanni Valdrè
    Scientific Reports, 13
  • [42] Hydrogenated ψ-graphene: Band gap engineering and optical properties
    Huang, Xiaoming
    Ma, Mengyao
    Cheng, Li
    Liu, Lizhao
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 115
  • [43] Band gap opening in graphene: a short theoretical study
    Sivabrata Sahu
    G. C. Rout
    International Nano Letters, 2017, 7 (2) : 81 - 89
  • [44] Tunable arsenene band gap in arsenene/graphene heterostructures
    Luo, Zhen
    Han, Dedong
    Dong, Junchen
    Li, Huijin
    Yu, Wen
    Zhang, Shengdong
    Zhang, Xing
    Wang, Yi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (SB)
  • [45] Analysis of Tunable Energy Band Gap of Graphene Layer
    Witjaksono, Gunawan
    Junaid, M.
    2018 IEEE 7TH INTERNATIONAL CONFERENCE ON PHOTONICS (ICP), 2018,
  • [46] Band gap formation in graphene by in-situ doping
    Park, Jeongho
    Mitchel, W. C.
    Brown, Gail J.
    Elhamri, Said
    Grazulis, Lawrence
    Smith, Howard E.
    Pacley, Shanee D.
    Boeckl, John J.
    Eyink, Kurt G.
    Mou, Shin
    Tomich, David H.
    Hoelscher, John E.
    APPLIED PHYSICS LETTERS, 2011, 98 (20)
  • [47] Direct graphene growth on MgO: origin of the band gap
    Gaddam, Sneha
    Bjelkevig, Cameron
    Ge, Siping
    Fukutani, Keisuke
    Dowben, Peter A.
    Kelber, Jeffry A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (07)
  • [48] THz band gap in encapsulated graphene quantum dots
    Massabeau, S.
    Riccardi, E.
    Rosticher, M.
    Valmorra, F.
    Huang, P.
    Tignon, J.
    Kontos, T.
    Dhillon, S.
    Ferreira, R.
    Mangeney, J.
    2018 43RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2018,
  • [49] Electric field tuning of the band gap in graphene multilayers
    Avetisyan, A. A.
    Partoens, B.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2009, 79 (03)
  • [50] Band Gap Tuning of Graphene by Adsorption of Aromatic Molecules
    Chang, Chung-Huai
    Fan, Xiaofeng
    Li, Lain-Jong
    Kuo, Jer-Lai
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (25): : 13788 - 13794