The mapping vx,y in normed linear spaces with applications to inequalities in analysis

被引:2
作者
Dragomir, SS
Koliha, JJ
机构
[1] Univ Transkei, Dept Math, ZA-5100 Umtata, South Africa
[2] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
关键词
lower and upper semi-inner products; normed spaces; inner product spaces; inequalities for sums and integrals in analysis;
D O I
10.1155/S1025583498000022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the mapping v(x,y) connected with the lower and upper semi-inner products (.,.)(i) and (.,.)(s), and study its monotonicity, boundedness, convexity and other properties. Applications to theory of inequalities in analysis are given including refinements of the Schwarz inequality.
引用
收藏
页码:37 / 55
页数:19
相关论文
共 7 条
[1]  
Dragomir S.S., 1992, U BEOGRAD PUBL ELEKT, V3, P5
[2]  
Dragomir S. S., 1992, REND MAT, V12, P357
[3]  
DRAGOMIR SS, 1990, RIV MAT U PARMA, V16, P239
[4]  
Miliic PM., 1987, MAT VESNIK, V39, P325
[5]  
Mitrinovic D.S., 1993, MATH ITS APPL, V61
[6]  
Royden H. L., 1989, REAL ANAL
[7]  
Vainberg M. M., 1974, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations