Analysis of the heterogeneous dynamics of imidazolium-based [Tf2N-] ionic liquids using molecular simulation

被引:12
作者
Androulaki, Eleni [1 ,2 ]
Vergadou, Niki [1 ]
Economou, Ioannis G. [1 ,3 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Adv Mat Physicochem Proc Nanotechnol & Micro, Mol Thermodynam & Modelling Mat Lab, Aghia Paraskevi, Greece
[2] Univ Crete, Dept Mat Sci & Technol, Iraklion, Greece
[3] Texas A&M Univ Qatar, Chem Engn Program, Doha, Qatar
关键词
molecular simulation; ionic liquids; dynamic heterogeneity; TRANSPORT-PROPERTIES; FORCE-FIELD; THERMOPHYSICAL PROPERTIES; VISCOSITY; DENSITY; SYSTEMS; PURE;
D O I
10.1080/00268976.2014.906670
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The complex dynamic behaviour of the imidazolium-based ionic liquids [C(n)mim(+)][Tf2N-], n = 4, 8, 12 is examined at various temperatures and at atmospheric pressure using molecular dynamics simulation. An existing all-atom force field is further optimised in order to attain reasonable agreement with experimental data for transport properties, such as self-diffusivities and viscosities. Dynamical heterogeneity phenomena are quantified through the calculation of the non-Gaussian parameter and the deviation of the self-part of the van Hove correlation function from the expected normal distribution. From this analysis, ions that move faster or slower than expected are detected in the system. These subsets of 'fast' and 'slow' ions form individual clusters consisting of either mobile or immobile ions. Detailed analysis of the ions' diffusion reveals preferential motion along the direction of the alkyl tail for the cation and along the vector that connects the two sulphur atoms for the anion. For the longest alkyl tails, the heterogeneity in the dynamics becomes more pronounced and is preserved for several nanoseconds, especially at low temperatures.
引用
收藏
页码:2694 / 2706
页数:13
相关论文
共 50 条
[31]   Imidazolium-based ionic liquids as cellulose solvents: Mechanism and molecular insights [J].
Rizvi, Sarmad ;
Gade, Hrushikesh M. .
BIOMASS & BIOENERGY, 2025, 196
[32]   Microstructure, dynamics and optical properties of metal-doped imidazolium-based ionic liquids [J].
Damian Rodriguez-Fernandez, Carlos ;
Montes-Campos, Hadrian ;
Lopez-Lago, Elena ;
de la Fuente, Raul ;
Varela, Luis M. .
JOURNAL OF MOLECULAR LIQUIDS, 2020, 317
[33]   Effects of repulsive interaction on the electric double layer of an imidazolium-based ionic liquid by molecular dynamics simulation [J].
Jin, Wenyang ;
Liu, Xiaohong ;
Han, Yining ;
Li, Shu ;
Yan, Tianying .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (04) :2628-2633
[34]   Prediction of viscosity of imidazolium-based ionic liquids using MLR and SVM algorithms [J].
Zhao, Yongsheng ;
Zhang, Xiangping ;
Deng, Liyuan ;
Zhang, Suojiang .
COMPUTERS & CHEMICAL ENGINEERING, 2016, 92 :37-42
[35]   Insight to the Local Structure of Mixtures of Imidazolium-Based Ionic Liquids and Molecular Solvents from Molecular Dynamics Simulations and Voronoi Analysis [J].
Dudariev, Dmytro ;
Koverga, Volodymyr ;
Kalugin, Oleg ;
Miannay, Francois-Alexandre ;
Polok, Kamil ;
Takamuku, Toshiyuki ;
Jedlovszky, Pal ;
Idrissi, Abdenacer .
JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (11) :2534-2545
[36]   Atomistic molecular dynamics simulation and COSMO-SAC approach for enhanced 1,3-propanediol extraction with imidazolium-based ionic liquids [J].
Akshat, Raj ;
Bharti, Anand ;
Padmanabhan, Padmini .
JOURNAL OF MOLECULAR MODELING, 2024, 30 (06)
[37]   Thermodynamics and Rheology of Imidazolium-Based Ionic Liquid-Oil Mixtures: A Molecular Simulation Study [J].
Lazarenko, Daria ;
Khabaz, Fardin .
JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (22) :5897-5908
[38]   Molecular Understanding of Polyaniline in Imidazolium-Based Ionic Liquid and Water Mixtures: A Molecular Dynamics Simulation Study [J].
Gandhi, Chaitanya Dharmendrakumar ;
Sappidi, Praveenkumar .
CHEMPHYSCHEM, 2025, 26 (14)
[39]   Alchemical Free Energy and Hamiltonian Replica Exchange Molecular Dynamics to Compute Hydrofluorocarbon Isotherms in Imidazolium-Based Ionic Liquids [J].
Wang, Ning ;
DeFever, Ryan S. ;
Maginn, Edward J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (11) :3324-3335
[40]   Molecular simulation of imidazolium amino acid-based ionic liquids [J].
Liu, Xiaomin ;
Zhou, Guohui ;
Zhang, Suojiang ;
Wu, Guangwen .
MOLECULAR SIMULATION, 2010, 36 (14) :1123-1130