Topological aspects of weighted graphs with application to fixed point theory

被引:2
作者
Alfuraidan, M. R. [1 ]
机构
[1] King Fand Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
Convergence almost everywhere; Directed graph; Fixed point; Monotone sequence; Nonexpansive mapping; Weighted graph; L1;
D O I
10.1016/j.amc.2017.06.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we introduce new concepts of G-monotone sequences, G-bounded and G(tau)-compact nonempty subsets of the set of vertices of a weighted digraph G, where tau is a sequential convergence. We also provide an application to metric fixed point theory. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 13 条
  • [1] Fixed points of monotone nonexpansive mappings with a graph
    Alfuraidan, Monther Rashed
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [2] Fixed points of monotone nonexpansive mappings on a hyperbolic metric space with a graph
    Alfuraidan, Monther Rashed
    Khamsi, Mohamed Amine
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [3] BESBES M, 1990, CR ACAD SCI I-MATH, V311, P243
  • [4] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [5] Goebel K., 1983, CONTEMP MATH-SINGAP, V21, P115, DOI DOI 10.1090/CONM/021/729507
  • [6] Goebel K., 1990, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, V28
  • [7] FIXED-POINTS BY A NEW ITERATION METHOD
    ISHIKAWA, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) : 147 - 150
  • [8] Jachymski J, 2008, P AM MATH SOC, V136, P1359
  • [9] Khamsi MA, 2015, FIXED POINT THEORY A, P1, DOI 10.1186/s13663-015-0346-x
  • [10] Krasnoselskii M.A., 1955, Uspekhi Matematicheskikh Nauk, V10, P123