Large deviation principle for stochastic convective Brinkman-Forchheimer equations perturbed by pure jump noise

被引:2
作者
Mohan, Manil T. [1 ]
机构
[1] Indian Inst Technol Roorkee IIT Roorkee, Dept Math, Haridwar Highway, Roorkee 247667, Uttarakhand, India
关键词
Convective Brinkman-Forchheimer equations; Jump noise; Strong solution; Wentzell- Freidlin large deviations; Weak convergence; NAVIER-STOKES EQUATIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; WELL-POSEDNESS; DRIVEN; UNIQUENESS; EXISTENCE; MARTINGALE;
D O I
10.1007/s00028-021-00736-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns some asymptotic analysis of stochastic convective Brinkman-Forchheimer (SCBF) equations subjected to multiplicative pure jump noise in two- and three-dimensional bounded domains. Using a weak convergence approach, we establish the Wentzell-Freidlin type large deviation principle for the strong solution to SCBF equations in a suitable Polish space.
引用
收藏
页码:4931 / 4971
页数:41
相关论文
共 72 条
  • [1] [Anonymous], 1995, NavierStokes Equations and Nonlinear Functional Analysis
  • [2] [Anonymous], 1977, J. Fac. Sci. Univ. Tokyo Sect
  • [3] [Anonymous], 2000, LARGE DEVIATIONS TEC
  • [4] [Anonymous], 1969, The Mathematical Theory of Viscous Incompressible Flow
  • [5] The Navier-Stokes problem modified by an absorption term
    Antontsev, S. N.
    de Oliveira, H. B.
    [J]. APPLICABLE ANALYSIS, 2010, 89 (12) : 1805 - 1825
  • [6] Applebaum D, 2009, CAM ST AD M, V93, P1
  • [7] On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity
    Bessaih, Hakima
    Millet, Annie
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 915 - 956
  • [8] Boué M, 1998, ANN PROBAB, V26, P1641
  • [9] Brzezniak Z., 2019, WELL POSEDNESS LARGE
  • [10] Brzezniak Z, 2020, J MATH FLUID MECH, V22, DOI 10.1007/s00021-020-0480-z