NoduleNet: Decoupled False Positive Reduction for Pulmonary Nodule Detection and Segmentation

被引:83
作者
Tang, Hao [1 ,2 ]
Zhang, Chupeng [2 ]
Xie, Xiaohui [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
[2] Deep Voxel Inc, Costa Mesa, CA USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI | 2019年 / 11769卷
关键词
Pulmonary nodule detection and segmentation; Deep convolutional neural network; ALGORITHMS;
D O I
10.1007/978-3-030-32226-7_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pulmonary nodule detection, false positive reduction and segmentation represent three of the most common tasks in the computer aided analysis of chest CT images. Methods have been proposed for each task with deep learning based methods heavily favored recently. However training deep learning models to solve each task separately may be sub-optimal - resource intensive and without the benefit of feature sharing. Here, we propose a new end-to-end 3D deep convolutional neural net (DCNN), called NoduleNet, to solve nodule detection, false positive reduction and nodule segmentation jointly in a multi-task fashion. To avoid friction between different tasks and encourage feature diversification, we incorporate two major design tricks: (1) decoupled feature maps for nodule detection and false positive reduction, and (2) a segmentation refinement subnet for increasing the precision of nodule segmentation. Extensive experiments on the large-scale LIDC dataset demonstrate that the multi-task training is highly beneficial, improving the nodule detection accuracy by 10.27%, compared to the baseline model trained to only solve the nodule detection task. We also carry out systematic ablation studies to highlight contributions from each of the added components. Code is available at https://github.com/uci-cbcl/NoduleNet.
引用
收藏
页码:266 / 274
页数:9
相关论文
共 19 条
[1]  
Aresta G., 2018, ARXIV181112789
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]  
CHENG L, 2018, LECT NOTES COMPUT SC, P473, DOI DOI 10.1007/978-3-030-01267-0_28
[4]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[5]  
Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.20115, 10.3322/caac.21492, 10.3322/caac.20107]
[6]  
Jia Ding, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P559, DOI 10.1007/978-3-319-66179-7_64
[7]   A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study [J].
Kalpathy-Cramer, Jayashree ;
Zhao, Binsheng ;
Goldgof, Dmitry ;
Gu, Yuhua ;
Wang, Xingwei ;
Yang, Hao ;
Tan, Yongqiang ;
Gillies, Robert ;
Napel, Sandy .
JOURNAL OF DIGITAL IMAGING, 2016, 29 (04) :476-487
[8]   S4ND: Single-Shot Single-Scale Lung Nodule Detection [J].
Khosravan, Naji ;
Bagci, Ulas .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :794-802
[9]  
Kundel H., 2008, ICRU Rep., V79, P1, DOI DOI 10.1093/JICRUNDN003
[10]   Evaluate the Malignancy of Pulmonary Nodules Using the 3-D Deep Leaky Noisy-OR Network [J].
Liao, Fangzhou ;
Liang, Ming ;
Li, Zhe ;
Hu, Xiaolin ;
Song, Sen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (11) :3484-3495