Efficiency Enhancement of Single-Junction GaAs Solar Cells with Gradually Doped p-n Junction Active Layers

被引:1
作者
Jung, Sang Hyun [1 ,2 ]
Kim, Youngjo [1 ]
Kim, Chang Zoo [1 ]
Kim, Kangho [1 ,2 ]
Jun, Dong-Hwan [1 ]
Park, Hyeong-Ho [1 ]
Shin, Hyun-Beom [1 ]
Choi, JeHyuk [1 ]
Park, Won-Kyu [1 ]
Lee, Jaejin [2 ]
Kang, Ho Kwan [1 ]
机构
[1] Korea Adv Nano Fab Ctr, Suwon 16229, South Korea
[2] Ajou Univ, Dept Elect & Comp Engn, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
GaAs; Single-Junction; Solar Cells; Photovoltaics; Graded Doping; Metalorganic Vapor Phase Epitaxy;
D O I
10.1166/sam.2018.3080
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Gradually doped p-n junction structures are investigated in this study to improve the power conversion efficiency of GaAs single-junction solar cells. We investigated the impact on enhancing the efficiency of GaAs solar cells with four different p-n junction doping profiles by comparing computer simulation results and fabricated device characteristics. GaAs solar cells with various graded doping profiles are epitaxially grown on p-type GaAs (100) substrates with 6' tilt angles toward [111] using metalorganic vapor phase epitaxy (MOVPE). GaAs solar cells with four different doping profiles are prepared: sample A: uniformly doped emitter and base layers; sample B: gradually doped emitter and uniformly doped base layers; sample C: uniformly doped emitter and gradually doped base layers; and sample D: gradually doped emitter and base layers. The GaAs solar cells are fabricated using standard photolithography, metal deposition, rapid thermal annealing, wet-chemical etching processes, and chip isolation. Photovoltaic device parameters of the GaAs cells are characterized under AM1.5 global illumination. It is found that a graded doping profile in the base layer plays an important role in improving the efficiency of GaAs solar cells.
引用
收藏
页码:575 / 579
页数:5
相关论文
共 14 条
[1]  
[Anonymous], P 9 EUR SPAC POW C S
[2]   III-V multijunction solar cells for concentrating photovoltaics [J].
Cotal, Hector ;
Fetzer, Chris ;
Boisvert, Joseph ;
Kinsey, Geoffrey ;
King, Richard ;
Hebert, Peter ;
Yoon, Hojun ;
Karam, Nasser .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (02) :174-192
[3]  
Fahrenbruch A.L., 1983, Fundamentals of Solar CellsAnonymous, P83
[4]   High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE [J].
Fetzer, CM ;
King, RR ;
Colter, PC ;
Edmondson, KM ;
Law, DC ;
Stavrides, AP ;
Yoon, H ;
Ermer, JH ;
Romero, MJ ;
Karam, NH .
JOURNAL OF CRYSTAL GROWTH, 2004, 261 (2-3) :341-348
[5]   40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions [J].
Geisz, J. F. ;
Friedman, D. J. ;
Ward, J. S. ;
Duda, A. ;
Olavarria, W. J. ;
Moriarty, T. E. ;
Kiehl, J. T. ;
Romero, M. J. ;
Norman, A. G. ;
Jones, K. M. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[6]   Solar cell efficiency tables (version 42) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05) :827-837
[7]   Solar cell efficiency tables (version 41) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :1-11
[8]  
Hovel H.J., 1975, SOL CELLS, V11, P17
[9]  
Kayes BM., 2011, Proceedings of the 37th IEEE Photovoltaic Specialists Conference
[10]   40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells [J].
King, R. R. ;
Law, D. C. ;
Edmondson, K. M. ;
Fetzer, C. M. ;
Kinsey, G. S. ;
Yoon, H. ;
Sherif, R. A. ;
Karam, N. H. .
APPLIED PHYSICS LETTERS, 2007, 90 (18)