Direct Numerical Simulations of Rayleigh-Taylor instability

被引:55
作者
Livescu, D. [1 ]
Wei, T. [1 ]
Petersen, M. R. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): CONVECTION, ROTATION, STRATIFICATION AND BUOYANCY EFFECTS | 2011年 / 318卷
关键词
TRANSITION;
D O I
10.1088/1742-6596/318/8/082007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024(2) x 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096(2) x 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Effects of Atwood number and stratification parameter on compressible multi-mode Rayleigh-Taylor instability
    Luo, Tengfei
    Wang, Jianchun
    PHYSICS OF FLUIDS, 2021, 33 (11)
  • [22] TWO-DIMENSIONAL BLAST-WAVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY: EXPERIMENT AND SIMULATION
    Kuranz, C. C.
    Drake, R. P.
    Harding, E. C.
    Grosskopf, M. J.
    Robey, H. F.
    Remington, B. A.
    Edwards, M. J.
    Miles, A. R.
    Perry, T. S.
    Blue, B. E.
    Plewa, T.
    Hearn, N. C.
    Knauer, J. P.
    Arnett, D.
    Leibrandt, D. R.
    ASTROPHYSICAL JOURNAL, 2009, 696 (01) : 749 - 759
  • [23] Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
    Zhou, Ye
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 720 : 1 - 136
  • [24] Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
    Zhou, Ye
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 723 : 1 - 160
  • [25] High-Reynolds number Rayleigh-Taylor turbulence
    Livescu, D.
    Ristorcelli, J. R.
    Gore, R. A.
    Dean, S. H.
    Cabot, W. H.
    Cook, A. W.
    JOURNAL OF TURBULENCE, 2009, 10 (13): : 1 - 32
  • [26] Compressibility effects on mixing layer in Rayleigh-Taylor turbulence
    Fu, Cheng-Quan
    Zhao, Zhiye
    Wang, Pei
    Liu, Nan-Sheng
    Lu, Xi-Yun
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 476
  • [27] Surface tension in incompressible Rayleigh-Taylor mixing flow
    Young, Y. -N.
    Ham, F. E.
    JOURNAL OF TURBULENCE, 2006, 7 (71): : 1 - 23
  • [28] Direct numerical simulations of spiral Taylor-Couette turbulence
    Berghout, Pieter
    Dingemans, Rick J.
    Zhu, Xiaojue
    Verzicco, Roberto
    Stevens, Richard J. A. M.
    van Saarloos, Wim
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2020, 887
  • [29] Instability and transition in boundary layers: Direct numerical simulations
    Fasel, Hermann F.
    IUTAM SYMPOSIUM ON ONE HUNDRED YEARS OF BOUNDARY LAYER RESEARCH, 2006, 129 : 257 - 267
  • [30] Scaling law of mixing layer in cylindrical Rayleigh-Taylor turbulence
    Zhao, Zhiye
    Wang, Pei
    Liu, Nan-Sheng
    Lu, Xi-Yun
    PHYSICAL REVIEW E, 2021, 104 (05)