Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules

被引:17
|
作者
Sapach, Anastasiia Yu. [1 ,2 ]
Sindeeva, Olga A. [1 ]
Nesterchuk, V. Mikhail [1 ]
Tsitrina, Alexandra A. [3 ]
Mayorova, Oksana A. [4 ]
Prikhozhdenko, Ekaterina S. [4 ]
Verkhovskii, Roman A. [4 ]
Mikaelyan, Arsen S. [3 ]
Kotelevtsev, Yuri [1 ]
Sukhorukov, Gleb B. [1 ,5 ,6 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow 143005, Russia
[2] Sechenov First State Med Univ, Moscow 119991, Russia
[3] Russian Acad Sci, Koltzov Inst Dev Biol, Moscow 119334, Russia
[4] Saratov NG Chernyshevskii State Univ, Saratov 410012, Russia
[5] Siberian State Med Univ, Tomsk 634050, Russia
[6] Queen Mary Univ London, London E1 4NS, England
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
nanomaterials; microcapsules; fluorescent label; cell tracking; macrophages; microcapsule-laden macrophages; macrophage-mediated drug delivery system; MULTILAYER CAPSULES; DRUG-DELIVERY; TARGETED DELIVERY; CELLS; NANOPARTICLES; ENCAPSULATION; CARRIERS; ALBUMIN; KIDNEY; COPRECIPITATION;
D O I
10.1021/acsami.2c12004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell -based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 mu m sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 mu g of high -molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 mu m polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.
引用
收藏
页码:51579 / 51592
页数:14
相关论文
共 50 条
  • [21] Outer Membrane Vesicles Prime and Activate Macrophage Inflammasomes and Cytokine Secretion In Vitro and In Vivo
    Cecil, Jessica D.
    O'Brien-Simpson, Neil M.
    Lenzo, Jason C.
    Holden, James A.
    Singleton, William
    Perez-Gonzalez, Alexis
    Mansell, Ashley
    Reynolds, Eric C.
    FRONTIERS IN IMMUNOLOGY, 2017, 8
  • [22] Development of intestine-targeted microcapsules for enhanced delivery of fucoxanthin: A strategy to mitigate lipid accumulation in vitro and in vivo
    Li, Hongliang
    Shang, Wenbo
    Wu, Shida
    Tan, Mingqian
    Wang, Haitao
    FOOD BIOSCIENCE, 2024, 59
  • [23] Advances in imaging strategies for in vivo tracking of exosomes
    Betzer, Oshra
    Barnoy, Eran
    Sadan, Tamar
    Elbaz, Idan
    Braverman, Cara
    Liu, Zhuang
    Popovtzer, Rachela
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2020, 12 (02)
  • [24] Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthogonal F-18 labeling
    Jeong, Hyeon Jin
    Yoo, Ran Ji
    Kim, Jin Kwan
    Kim, Min Hwan
    Park, Su Hong
    Kim, Haebin
    Lim, Jae Wook
    Do, Sun Hee
    Lee, Kyo Chul
    Lee, Yong Jin
    Kim, Dong Wook
    BIOMATERIALS, 2019, 199 : 32 - 39
  • [25] Why nanoparticles prefer liver macrophage cell uptake in vivo
    Ngo, Wayne
    Ahmed, Sara
    Blackadar, Colin
    Bussin, Bram
    Ji, Qin
    Mladjenovic, Stefan M.
    Sepahi, Zahra
    Chan, Warren C. W.
    ADVANCED DRUG DELIVERY REVIEWS, 2022, 185
  • [26] Toxicity of polymeric nanoparticles in vivo and in vitro
    Voigt, Nadine
    Henrich-Noack, Petra
    Kockentiedt, Sarah
    Hintz, Werner
    Tomas, Juergen
    Sabel, Bernhard A.
    JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (06)
  • [27] Transdermal Delivery of Ondansetron Hydrochloride via Bilosomal Systems: In Vitro, Ex Vivo, and In Vivo Characterization Studies
    Ammar, Hussein O.
    Mohamed, Magdy Ibrahim
    Tadros, Mina Ibrahim
    Fouly, Aya Adel
    AAPS PHARMSCITECH, 2018, 19 (05): : 2276 - 2287
  • [28] Chiral silver nanoparticles with surface-anchored L(D)-Cys exhibit dissimilar biological characteristics in vitro but not in vivo
    Pang, Yingxin
    Tao, Xiaoqi
    Qin, Zongmin
    Jiang, Muran
    Song, Erqun
    Song, Yang
    TOXICOLOGY LETTERS, 2024, 398 : 28 - 37
  • [29] Macrophage Hitchhiking Nanoparticles for the Treatment of Myocardial Infarction: An In Vitro and In Vivo Study
    Torrieri, Giulia
    Iqbal, Imran
    Fontana, Flavia
    Talman, Virpi
    Liljenback, Heidi
    Putri, Andriana
    Nammas, Wail
    Rajander, Johan
    Guo-Li, Xiang
    Low, Philip S. S.
    Teesalu, Tambet
    Roivainen, Anne
    Hirvonen, Jouni
    Ruskoaho, Heikki
    Balasubramanian, Vimalkumar
    Saraste, Antti
    Santos, Helder A.
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (34)
  • [30] Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro
    Bota, Paige C. S.
    Collie, Angela M. B.
    Puolakkainen, Pauli
    Vernon, Robert B.
    Sage, E. Helene
    Ratner, Buddy D.
    Stayton, Patrick S.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 95A (02) : 649 - 657