The control of a class of uncertain fractional-order chaotic systems via reduced-order method

被引:6
作者
Zeng, Yanhui [1 ]
Luo, Runzi [1 ]
Su, Haipeng [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
来源
OPTIK | 2016年 / 127卷 / 24期
基金
中国国家自然科学基金;
关键词
Fractional-order chaotic system; Chaos control; Reduced-order method; PROJECTIVE SYNCHRONIZATION; ROSSLER SYSTEM; DIFFERENTIAL-EQUATIONS; LYAPUNOV FUNCTIONS; OBSERVER;
D O I
10.1016/j.ijleo.2016.09.092
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we mainly discuss the control of a class of 3,4-dimensional fractional-order chaotic systems with unknown parameter, model uncertainties and external disturbances. Based on the fractional-order extension of Lyapunov stability theorem some novel criteria for the control of a class of 3,4-dimensional fractional-order chaotic systems are proposed via reduced-order method. Moreover, by using our results the control and synchronization of the fractional-order Rossler system is also investigated. Numerical simulations are shown to further verify the feasibility of the presented control schemes. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:11948 / 11959
页数:12
相关论文
共 50 条
[41]   Terminal observer and disturbance observer for the class of fractional-order chaotic systems [J].
Soltanpour, Mohammad Reza ;
Shirkavand, Mehrdad .
SOFT COMPUTING, 2020, 24 (12) :8881-8898
[42]   A practical synchronization approach for fractional-order chaotic systems [J].
Zhou, Ping ;
Zhu, Peng .
NONLINEAR DYNAMICS, 2017, 89 (03) :1719-1726
[43]   LMI-based stabilization of a class of fractional-order chaotic systems [J].
Mohammadreza Faieghi ;
Suwat Kuntanapreeda ;
Hadi Delavari ;
Dumitru Baleanu .
Nonlinear Dynamics, 2013, 72 :301-309
[44]   Projective Lag Synchronization Controller Design for Uncertain Fractional-Order Chaotic Systems [J].
Lv, Hui ;
Zhang, Xiulan ;
Liu, Heng ;
Xu, Song .
2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, :6190-6194
[45]   Adaptive neural network backstepping control for a class of uncertain fractional-order chaotic systems with unknown backlash-like hysteresis [J].
Wu, Yimin ;
Lv, Hui .
AIP ADVANCES, 2016, 6 (08)
[46]   Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control [J].
Diyi Chen ;
Runfan Zhang ;
Julien Clinton Sprott ;
Xiaoyi Ma .
Nonlinear Dynamics, 2012, 70 :1549-1561
[47]   Control and Projective Synchronization of Fractional-order Chaotic Systems Based on Sliding Mode Control [J].
Yan, Xiaomei ;
Liu, Ding .
ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, :893-898
[48]   Projective synchronization of fractional-order chaotic systems based on sliding mode control [J].
Liu Ding ;
Yan Xiao-Mei .
ACTA PHYSICA SINICA, 2009, 58 (06) :3747-3752
[49]   Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control [J].
Chen, Diyi ;
Zhang, Runfan ;
Sprott, Julien Clinton ;
Ma, Xiaoyi .
NONLINEAR DYNAMICS, 2012, 70 (02) :1549-1561
[50]   Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller [J].
Aghababa, Mohammad Pourmahmood .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2670-2681