The control of a class of uncertain fractional-order chaotic systems via reduced-order method

被引:6
作者
Zeng, Yanhui [1 ]
Luo, Runzi [1 ]
Su, Haipeng [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
来源
OPTIK | 2016年 / 127卷 / 24期
基金
中国国家自然科学基金;
关键词
Fractional-order chaotic system; Chaos control; Reduced-order method; PROJECTIVE SYNCHRONIZATION; ROSSLER SYSTEM; DIFFERENTIAL-EQUATIONS; LYAPUNOV FUNCTIONS; OBSERVER;
D O I
10.1016/j.ijleo.2016.09.092
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we mainly discuss the control of a class of 3,4-dimensional fractional-order chaotic systems with unknown parameter, model uncertainties and external disturbances. Based on the fractional-order extension of Lyapunov stability theorem some novel criteria for the control of a class of 3,4-dimensional fractional-order chaotic systems are proposed via reduced-order method. Moreover, by using our results the control and synchronization of the fractional-order Rossler system is also investigated. Numerical simulations are shown to further verify the feasibility of the presented control schemes. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:11948 / 11959
页数:12
相关论文
共 50 条
[31]   Design of fractional robust adaptive intelligent controller for uncertain fractional-order chaotic systems based on active control technique [J].
Bigdeli, Nooshin ;
Ziazi, Hossein Alinia .
NONLINEAR DYNAMICS, 2017, 87 (03) :1703-1719
[32]   Elaboration of a generalized approach to control and to synchronize the fractional-order chaotic systems [J].
Soukkou, Ammar ;
Leulmi, Salah .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2017, 46 (08) :853-878
[33]   Adaptive track control for fractional-order chaotic systems with or without uncertainty [J].
Li, Ruihong .
OPTIK, 2016, 127 (23) :11263-11276
[34]   Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control [J].
Bouzeriba, A. ;
Boulkroune, A. ;
Bouden, T. .
NEURAL COMPUTING & APPLICATIONS, 2016, 27 (05) :1349-1360
[35]   Synchronization of Different Dimensions Fractional-Order Chaotic Systems with Uncertain Parameters and Secure Communication [J].
Vafaei, Vajiheh ;
Kheiri, Hossein ;
Akbarfam, Aliasghar Jodayree .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (05) :57-72
[36]   Tracking control for uncertain fractional-order chaotic systems based on disturbance observer and neural network [J].
Shao, Shuyi ;
Chen, Mou ;
Wu, Qingxian .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2017, 34 (03) :1011-1030
[37]   Fractional-Order Sliding Mode Control Method for a Class of Integer-Order Nonlinear Systems [J].
Qing, Wenjie ;
Pan, Binfeng ;
Hou, Yueyang ;
Lu, Shan ;
Zhang, Wenjing .
AEROSPACE, 2022, 9 (10)
[38]   Sliding Mode Synchronization for a Class of Uncertain Fractional Order Chaotic Systems [J].
Ma, Xiaoxia ;
Hou, Bing ;
Xu, Jin ;
Liu, Heng .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12) :370-378
[39]   Active control technique of fractional-order chaotic complex systems [J].
Mahmoud, Gamal M. ;
Ahmed, Mansour E. ;
Abed-Elhameed, Tarek M. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (06)
[40]   Terminal observer and disturbance observer for the class of fractional-order chaotic systems [J].
Mohammad Reza Soltanpour ;
Mehrdad Shirkavand .
Soft Computing, 2020, 24 :8881-8898