From dispersion relations to spectral dimension-and back again

被引:49
作者
Sotiriou, Thomas P. [1 ,2 ,3 ]
Visser, Matt [4 ]
Weinfurtner, Silke [1 ,2 ]
机构
[1] Scuola Int Super Studi Avanzati, SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[3] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[4] Victoria Univ Wellington, Sch Math Stat & Operat Res, Wellington 6140, New Zealand
来源
PHYSICAL REVIEW D | 2011年 / 84卷 / 10期
关键词
D O I
10.1103/PhysRevD.84.104018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The so-called spectral dimension is a scale-dependent number associated with both geometries and field theories that has recently attracted much attention, driven largely, though not exclusively, by investigations of causal dynamical triangulations and Horava gravity as possible candidates for quantum gravity. We advocate the use of the spectral dimension as a probe for the kinematics of these (and other) systems in the region where spacetime curvature is small, and the manifold is flat to a good approximation. In particular, we show how to assign a spectral dimension (as a function of so-called diffusion time) to any arbitrarily specified dispersion relation. We also analyze the fundamental properties of spectral dimension using extensions of the usual Seeley-DeWitt and Feynman expansions and by using saddle point techniques. The spectral dimension turns out to be a useful, robust, and powerful probe, not only of geometry, but also of kinematics.
引用
收藏
页数:13
相关论文
共 27 条
  • [1] The spectral dimension of the universe is scale dependent
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (17)
  • [2] CDT meets Horava-Lifshitz gravity
    Ambjorn, J.
    Goerlich, A.
    Jordan, S.
    Jurkiewicz, J.
    Loll, R.
    [J]. PHYSICS LETTERS B, 2010, 690 (04) : 413 - 419
  • [3] Ambjorn J., ARXIV10072560
  • [4] [Anonymous], ARXIV09124757
  • [5] [Anonymous], ARXIV10040352
  • [6] [Anonymous], ARXIV10091136
  • [7] Continuum random combs and scale-dependent spectral dimension
    Atkin, Max R.
    Giasemidis, Georgios
    Wheater, John F.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (26)
  • [8] Hawking-like radiation from evolving black holes and compact horizonless objects
    Barcelo, Carlos
    Liberati, Stefano
    Sonego, Sebastiano
    Visser, Matt
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (02):
  • [9] (2+1)-dimensional quantum gravity as the continuum limit of causal dynamical triangulations
    Benedetti, D.
    Loll, R.
    Zamponi, F.
    [J]. PHYSICAL REVIEW D, 2007, 76 (10):
  • [10] Spectral geometry as a probe of quantum spacetime
    Benedetti, Dario
    Henson, Joe
    [J]. PHYSICAL REVIEW D, 2009, 80 (12):