Scalable digital hardware for a trapped ion quantum computer

被引:14
作者
Mount, Emily [1 ]
Gaultney, Daniel [1 ]
Vrijsen, Geert [1 ]
Adams, Michael [1 ]
Baek, So-Young [1 ]
Hudek, Kai [1 ]
Isabella, Louis [1 ]
Crain, Stephen [1 ]
van Rynbach, Andre [1 ]
Maunz, Peter [2 ]
Kim, Jungsang [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
Quantum computation; Qubits; Trapped ions; ATOMIC IONS; FREQUENCY STABILIZATION; LASER;
D O I
10.1007/s11128-015-1120-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.
引用
收藏
页码:5281 / 5298
页数:18
相关论文
共 50 条
  • [31] Reconfigurable and Programmable Ion Trap Quantum Computer
    Allen, Stewart
    Kim, Jungsang
    Moehring, David L.
    Monroe, Christopher R.
    2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 205 - 207
  • [32] Recent experiments in trapped-ion quantum information processing at NIST
    Chiaverini, J.
    Barrett, M. D.
    Blakestad, R. B.
    Britton, J.
    Itano, W.
    Jost, J. D.
    Knill, E.
    Langer, C.
    Leibfried, D.
    Ozeri, R.
    Schaetz, T.
    Wineland, D. J.
    ICONO 2005: ULTRAFAST PHENOMENA AND PHYSICS OF SUPERINTENSE LASER FIELDS; QUANTUM AND ATOM OPTICS; ENGINEERING OF QUANTUM INFORMATION, 2006, 6256
  • [33] Integrated optics architecture for trapped-ion quantum information processing
    D. Kielpinski
    C. Volin
    E. W. Streed
    F. Lenzini
    M. Lobino
    Quantum Information Processing, 2016, 15 : 5315 - 5338
  • [34] Integrated optics architecture for trapped-ion quantum information processing
    Kielpinski, D.
    Volin, C.
    Streed, E. W.
    Lenzini, F.
    Lobino, M.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5315 - 5338
  • [35] Machine learning design of a trapped-ion quantum spin simulator
    Teoh, Yi Hong
    Drygala, Marina
    Melko, Roger G.
    Islam, Rajibul
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (02):
  • [36] Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps
    Ratcliffe, Alexander K.
    Taylor, Richard L.
    Hope, Joseph J.
    Carvalho, Andre R. R.
    PHYSICAL REVIEW LETTERS, 2018, 120 (22)
  • [37] Breaking rotational symmetry in a trapped-ion quantum tunneling rotor
    Ohira, Ryutaro
    Mukaiyama, Takashi
    Toyoda, Kenji
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [38] Quantum Computer Development with Single Ion Implantation
    Persaud, A.
    Park, S. J.
    Liddle, J. A.
    Rangelow, I. W.
    Bokor, J.
    Keller, R.
    Allen, F. I.
    Schneider, D. H.
    Schenkel, T.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 233 - 245
  • [39] Dual trapped-ion quantum simulators: an alternative route towards exotic quantum magnets
    Grass, Tobias
    Lewenstein, Maciej
    Bermudez, Alejandro
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [40] Demonstration of a Bayesian quantum game on an ion-trap quantum computer
    Solmeyer, Neal
    Linke, Norbert M.
    Figgatt, Caroline
    Landsman, Kevin A.
    Balu, Radhakrishnan
    Siopsis, George
    Monroe, C.
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (04):