Scalable digital hardware for a trapped ion quantum computer

被引:14
|
作者
Mount, Emily [1 ]
Gaultney, Daniel [1 ]
Vrijsen, Geert [1 ]
Adams, Michael [1 ]
Baek, So-Young [1 ]
Hudek, Kai [1 ]
Isabella, Louis [1 ]
Crain, Stephen [1 ]
van Rynbach, Andre [1 ]
Maunz, Peter [2 ]
Kim, Jungsang [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
Quantum computation; Qubits; Trapped ions; ATOMIC IONS; FREQUENCY STABILIZATION; LASER;
D O I
10.1007/s11128-015-1120-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.
引用
收藏
页码:5281 / 5298
页数:18
相关论文
共 50 条
  • [1] Scalable digital hardware for a trapped ion quantum computer
    Emily Mount
    Daniel Gaultney
    Geert Vrijsen
    Michael Adams
    So-Young Baek
    Kai Hudek
    Louis Isabella
    Stephen Crain
    Andre van Rynbach
    Peter Maunz
    Jungsang Kim
    Quantum Information Processing, 2016, 15 : 5281 - 5298
  • [2] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [3] Nuclear spin qubits in a trapped-ion quantum computer
    Feng, M.
    Xu, Y. Y.
    Zhou, F.
    Suter, D.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [4] Towards fast and scalable trapped-ion quantum logic with integrated photonics
    Mehta, Karan K.
    Zhang, Chi
    Miller, Stefanie
    Home, Jonathan P.
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION XII, 2019, 10933
  • [5] CryoCMOS Hardware Technology A Classical Infrastructure for a Scalable Quantum Computer Invited Paper
    Homulle, Harald
    Visser, Stefan
    Patra, Bishnu
    Ferrari, Giorgio
    Prati, Enrico
    Almudever, Carmen G.
    Bertels, Koen
    Sebastiano, Fabio
    Charbon, Edoardo
    PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS (CF'16), 2016, : 282 - 287
  • [6] Trapped-Ion Quantum Computer with Robust Entangling Gates and Quantum Coherent Feedback
    Manovitz, Tom
    Shapira, Yotam
    Gazit, Lior
    Akerman, Nitzan
    Ozeri, Roee
    PRX QUANTUM, 2022, 3 (01):
  • [7] Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer
    Foss-Feig, Michael
    Ragole, Stephen
    Potter, Andrew
    Dreiling, Joan
    Figgatt, Caroline
    Gaebler, John
    Hall, Alex
    Moses, Steven
    Pino, Juan
    Spaun, Ben
    Neyenhuis, Brian
    Hayes, David
    PHYSICAL REVIEW LETTERS, 2022, 128 (15)
  • [8] Trapped Ion Quantum Computation by Adiabatic Passage
    Feng, Xun-Li
    Wu, Chunfeng
    Lai, C. H.
    Oh, C. H.
    SOLID-STATE QUANTUM COMPUTING, PROCEEDINGS, 2008, 1074 : 54 - +
  • [9] Technologies for trapped-ion quantum information systems
    Eltony, Amira M.
    Gangloff, Dorian
    Shi, Molu
    Bylinskii, Alexei
    Vuletic, Vladan
    Chuang, Isaac L.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5351 - 5383
  • [10] Stable Turnkey Laser System for a Yb/Ba Trapped-Ion Quantum Computer
    Chen T.
    Kim J.
    Kuzyk M.
    Whitlow J.
    Phiri S.
    Bondurant B.
    Riesebos L.
    Brown K.R.
    Kim J.
    IEEE. Trans. Quantum. Eng., 2022,