Modelling peptide nanotubes for artificial ion channels

被引:22
|
作者
Rahmat, Fainida [1 ]
Thamwattana, Ngamta [1 ]
Cox, Barry J. [2 ]
机构
[1] Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
[2] Univ Adelaide, Nanomech Grp, Sch Math Sci, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
WALLED CARBON NANOTUBES; MOLECULAR-DYNAMICS; DESIGN; FORCE; NANOSTRUCTURES; ENERGETICS; NANOSCALE; TRANSPORT; MECHANICS;
D O I
10.1088/0957-4484/22/44/445707
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the van der Waals interaction of D,L-Ala cyclopeptide nanotubes and various ions, ion-water clusters and C-60 fullerenes, using the Lennard-Jones potential and a continuum approach which assumes that the atoms are smeared over the peptide nanotube providing an average atomic density. Our results predict that Li+, Na+, Rb+ and Cl- ions and ion-water clusters are accepted into peptide nanotubes of 8.5 angstrom internal diameter whereas the C-60 molecule is rejected. The model indicates that the C-60 molecule is accepted into peptide nanotubes of 13 angstrom internal diameter, suggesting that the interaction energy depends on the size of the molecule and the internal diameter of the peptide nanotube. This result may be useful for the design of peptide nanotubes for drug delivery applications. Further, we also find that the ions prefer a position inside the peptide ring where the energy is minimum. In contrast, Li+-water clusters prefer to be in the space between each peptide ring.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Synthesis of Artificial Ion Channels in Bilayer Membrane
    Bao Chunyan
    Jia Huijuan
    Liu Tao
    Wang Yi
    Peng Wei
    Zhu Linyong
    PROGRESS IN CHEMISTRY, 2012, 24 (07) : 1337 - 1345
  • [32] End group engineering of artificial ion channels
    Otis, F
    Voyer, N
    Polidori, A
    Pucci, B
    NEW JOURNAL OF CHEMISTRY, 2006, 30 (02) : 185 - 190
  • [33] Creation of Metal Sensitive Artificial Ion Channels
    Noshiro, D.
    Asami, K.
    Futaki, S.
    BIOPOLYMERS, 2011, 96 (04) : 500 - 500
  • [34] Natural and artificial ion channels for biosensing platforms
    Steller, L.
    Kreir, M.
    Salzer, R.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 402 (01) : 209 - 230
  • [35] Reconstitution of lysosomal ion channels into artificial membranes
    Venturi, Elisa
    Sitsapesan, Rebecca
    LYSOSOMES AND LYSOSOMAL DISEASES, 2015, 126 : 217 - 236
  • [36] Natural and artificial ion channels for biosensing platforms
    L. Steller
    M. Kreir
    R. Salzer
    Analytical and Bioanalytical Chemistry, 2012, 402 : 209 - 230
  • [37] Towards unimolecular artificial channels using peptide nanostructures
    Voyer, N
    Otis, F
    Martin, J
    Richer, J
    Biron, E
    Meillon, LC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U3024 - U3024
  • [38] Modelling drug and toxin binding to ion channels
    Kuyucak, Serdar
    DRUGS OF THE FUTURE, 2007, 32 : 33 - 34
  • [39] Geometrical modelling of Ohmic conductance in ion channels
    Sutherland, J
    Arteca, GA
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2002, 21 (02): : 101 - 110
  • [40] Bending of peptide nanotubes by focused electron and ion beams
    Gour, Nidhi
    Verma, Sandeep
    SOFT MATTER, 2009, 5 (09) : 1789 - 1791