Polymer vectors via controlled/living radical polymerization for gene delivery

被引:151
作者
Xu, F. J. [1 ]
Yang, W. T. [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Chem Resource Engn, Key Lab Carbon Fiber & Funct Polymers,Minist Educ, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Gene delivery; Polymeric carriers; LRP; ATRP; RAFT; FRAGMENTATION CHAIN-TRANSFER; HYDROXYPROPYL CELLULOSE BACKBONES; BIOCOMPATIBLE BLOCK-COPOLYMERS; AQUEOUS RAFT POLYMERIZATION; METHYL-ETHER METHACRYLATE; REVERSIBLE ADDITION; IN-VITRO; 2-(DIMETHYLAMINO)ETHYL METHACRYLATE; STAR POLYMERS; TRIBLOCK COPOLYMERS;
D O I
10.1016/j.progpolymsci.2010.11.005
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The design of efficient gene delivery vectors is a challenging task in gene therapy. Recent progress in living/controlled radical polymerizations (LRPs), in particular atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization providing a means for the design and synthesis of new polymeric gene vectors with well-defined compositions, architectures and functionalities is reviewed here. Polymeric gene vectors with different architectures, including homopolymers, block copolymers, graft copolymers, and star-shaped polymers, are conveniently prepared via ATRP and RAFT polymerization. The corresponding synthesis strategies are described in detail. The recent research activities indicate that ATRP and RAFT polymerization have become essential tools for the design and synthesis of advanced, noble and novel gene carriers. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1099 / 1131
页数:33
相关论文
共 215 条
[51]   Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus [J].
Green, NK ;
Herbert, CW ;
Hale, SJ ;
Hale, AB ;
Mautner, V ;
Harkins, R ;
Hermiston, T ;
Ulbrich, K ;
Fisher, KD ;
Seymour, LW .
GENE THERAPY, 2004, 11 (16) :1256-1263
[52]   Synthesis of Poly(glycidyl methacrylate)-block-Poly(pentafluorostyrene) by RAFT: Precursor to Novel Amphiphilic Poly(glyceryl methacrylate)-block-Poly(pentafluorostyrene) [J].
Gudipati, Chakravarthy S. ;
Tan, Maureen B. H. ;
Hussain, Hazrat ;
Liu, Ye ;
He, Chaobin ;
Davis, Thomas P. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2008, 29 (23) :1902-1907
[53]  
Gupta S.S., 2005, Chem. Commun, V41, P4315
[54]  
HAO J, 2009, ARCH PHARM RES, V32, P1976
[55]   CONTROLLING THE SWELLING CHARACTERISTICS OF TEMPERATURE-SENSITIVE CELLULOSE ETHER HYDROGELS [J].
HARSH, DC ;
GEHRKE, SH .
JOURNAL OF CONTROLLED RELEASE, 1991, 17 (02) :175-185
[56]   New polymer synthesis by nitroxide mediated living radical polymerizations [J].
Hawker, CJ ;
Bosman, AW ;
Harth, E .
CHEMICAL REVIEWS, 2001, 101 (12) :3661-3688
[57]   Direct synthesis of controlled-structure primary amine-based methacrylic polymers by living radical polymerization [J].
He, Lihong ;
Read, Elizabeth S. ;
Armes, Steven P. ;
Adams, Dave J. .
MACROMOLECULES, 2007, 40 (13) :4429-4438
[58]   Charged polymers via controlled radical polymerization and their implications for gene delivery [J].
Heath, William H. ;
Senyurt, Askim F. ;
Layman, John ;
Long, Timothy E. .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2007, 208 (12) :1243-1249
[59]   DNA microarray technology: Devices, systems, and applications [J].
Heller, MJ .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :129-153
[60]   pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery [J].
Henry, Scott M. ;
El-Sayed, Mohamed E. H. ;
Pirie, Christopher M. ;
Hoffman, Allan S. ;
Stayton, Patrick S. .
BIOMACROMOLECULES, 2006, 7 (08) :2407-2414