The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties

被引:35
作者
Chai, Hongbin [1 ]
Chang, Yue [1 ]
Zhang, Yunchong [1 ]
Chen, Zhize [1 ]
Zhong, Yi [1 ]
Zhang, Linping [1 ]
Sui, Xiaofeng [1 ]
Xu, Hong [1 ,2 ]
Mao, Zhiping [1 ,2 ]
机构
[1] Donghua Univ, Innovat Ctr Text Sci & Technol, Coll Chem Chem Engn & Biotechnol, Key Lab Sci & Technol Ecotext,Minist Educ, Shanghai 201620, Peoples R China
[2] Qingdao Univ, Collaborat Innovat Ctr Ecotext Shandong Prov, Qingdao 266071, Peoples R China
关键词
Polylactide; Cellulose Nanocrystals; Mechanical and crystallization properties; GRAFTED CELLULOSE NANOCRYSTALS; POLYLACTIC ACID; SURFACE-MODIFICATION; POLY(LACTIC ACID); PLA; DEGRADATION; COMPOSITES; POLYMERS; STEREOCOMPLEXATION; POLYMERIZATION;
D O I
10.1016/j.ijbiomac.2019.11.135
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polylactide/cellulose nanocompositeswere fabricated by blending of commercial polylactide (PLA) and modified cellulose nanocrystals (CNCs). Modified CNCs were prepared via the in situ polymerization of CNCs and L-lactic acid (CNCs-PLLA) or D-lactic acid (CNCs-PDLA). The actual occurrence of chemical bond between CNCs and PLA segmentwas confirmed by Fourier transforminfrared, nuclear magnetic resonance, X-ray diffraction and solubility tests. Differential scanning calorimetry and X-ray diffraction characterization indicated that CNCs-PDLA better improved the crystallization ability of PLA matrix compared with CNCs-PLLA. Furthermore, compared with the neat PLA (60.0 MPa), the tensile strength of resulting nanocomposites showed an enhancement of up to 36% (81.65 MPa). And the nanocompositeswith CNCs-PDLA exhibited both high crystallinity and improvedmechanical properties. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1578 / 1588
页数:11
相关论文
共 64 条
[51]   Biodegradable "Core-Shell" Rubber Nanoparticles and Their Toughening of Poly(lactides) [J].
Sun, Yang ;
He, Chaobin .
MACROMOLECULES, 2013, 46 (24) :9625-9633
[53]   Poly(lactic acid) stereocomplexes: A decade of progress [J].
Tsuji, Hideto .
ADVANCED DRUG DELIVERY REVIEWS, 2016, 107 :97-135
[54]   Polylactide cellulose-based nanocomposites [J].
Vatansever, Emre ;
Arslan, Dogan ;
Nofar, Mohammadreza .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 137 :912-938
[55]   Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution [J].
Wang, Zhiguo ;
Xu, Junfei ;
Lu, Yingzhao ;
Hu, Lijiang ;
Fan, Yimin ;
Ma, Jinxia ;
Zhou, Xiaofan .
INDUSTRIAL CROPS AND PRODUCTS, 2017, 109 :889-896
[56]   Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications [J].
Wohlhauser, Sandra ;
Delepierre, Gwendoline ;
Labet, Marianne ;
Morandi, Gaelle ;
Thielemans, Wim ;
Weder, Christoph ;
Zoppe, Justin O. .
MACROMOLECULES, 2018, 51 (16) :6157-6189
[57]   Synthesis and characterization of cellulose nanocrystal-graft-poly(D-lactide) and its nanocomposite with poly(L-lactide) [J].
Wu, Hao ;
Nagarajan, S. ;
Zhou, Lijuan ;
Duan, Yongxin ;
Zhang, Jianming .
POLYMER, 2016, 103 :365-375
[58]   Reverse Reconstruction and Bioprinting of Bacterial Cellulose-Based Functional Total Intervertebral Disc for Therapeutic Implantation [J].
Yang, Junchuan ;
Wang, Le ;
Zhang, Wei ;
Sun, Zhen ;
Li, Ying ;
Yang, Mingzhu ;
Zeng, Di ;
Peng, Baogan ;
Zheng, Wenfu ;
Jiang, Xingyu ;
Yang, Guang .
SMALL, 2018, 14 (07)
[59]   Green One-Pot Synthesis of Surface Hydrophobized Cellulose Nanocrystals in Aqueous Medium [J].
Yoo, Youngman ;
Youngblood, Jeffrey P. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (07) :3927-3938
[60]   From Cellulose Nanospheres, Nanorods to Nanofibers: Various Aspect Ratio Induced Nucleation/Reinforcing Effects on Polylactic Acid for Robust-Barrier Food Packaging [J].
Yu, Hou-Yong ;
Zhang, Heng ;
Song, Mei-Li ;
Zhou, Ying ;
Yao, Juming ;
Ni, Qing-Qing .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (50) :43920-43938