Affine, quasi-affine and co-affine frames on local fields of positive characteristic

被引:3
作者
Behera, Biswaranjan [1 ]
Jahan, Qaiser [1 ,2 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, 203 BT Rd, Kolkata 700108, India
[2] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Bessel sequence; affine frame; quasi-affine frame; co-affine frame; local field; translation invariance; ORTHOGONAL WAVELETS;
D O I
10.1002/mana.201300348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of quasi-affine frame in Euclidean spaces was introduced to obtain translation invariance of the discrete wavelet transform. We extend this concept to a local field K of positive characteristic. We show that the affine system generated by a finite number of functions is an affine frame if and only if the corresponding quasi-affine system is a quasi-affine frame. In such a case the exact frame bounds are equal. This result is obtained by using the properties of an operator associated with two such affine systems. We characterize the translation invariance of such an operator. A related concept is that of co-affine system. We show that there do not exist any co-affine frame in L2(K).
引用
收藏
页码:2154 / 2169
页数:16
相关论文
共 26 条
[11]  
Gressman P., 2003, BEYOND WAVELETS, V10 of, P215
[12]   Oversampling, quasi-affine frames, and wave packets [J].
Hernández, E ;
Labate, D ;
Weiss, G ;
Wilson, E .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (02) :111-147
[13]   A unified characterization of reproducing systems generated by a finite family, II [J].
Hernández E. ;
Labate D. ;
Weiss G. .
The Journal of Geometric Analysis, 2002, 12 (4) :615-662
[14]  
Johnson B., 2004, WAVELETS FRAMES OPER, P193
[15]   Non-Haar p-adic wavelets and their application to pseudo-differential operators and equations [J].
Khrennikov, A. Yu. ;
Shelkovich, V. M. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 28 (01) :1-23
[16]   p-adic refinable functions and MRA-based wavelets [J].
Khrennikov, A. Yu. ;
Shelkovich, V. M. ;
Skopina, M. .
JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) :226-238
[17]   p-Adic wavelets and their applications [J].
Kozyrev, S. V. ;
Khrennikov, A. Yu. ;
Shelkovich, V. M. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 (01) :157-196
[18]   p-Adic integral operators in wavelet bases [J].
Kozyrev, S. V. ;
Khrennikov, A. Yu. .
DOKLADY MATHEMATICS, 2011, 83 (02) :209-212
[19]  
Lang W.C., 1998, INT J MATH MATH SCI, V21, P307, DOI [10.1155/S0161171298000428, DOI 10.1155/S0161171298000428, 10.1155/S01611]
[20]   Orthogonal wavelets on the cantor dyadic group [J].
Lang, WC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (01) :305-312