Pseudo 2-factor isomorphic regular bipartite graphs

被引:6
作者
Abreu, M. [1 ]
Diwan, A. A. [2 ]
Jackson, Bill [3 ]
Labbate, D. [4 ]
Sheehan, J. [5 ]
机构
[1] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
[2] Indian Inst Technol, Dept Comp Sci & Engn, Bombay 400076, Maharashtra, India
[3] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[4] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[5] Kings Coll London, Dept Math Sci, Old Aberdeen AB24 3UE, Scotland
关键词
2-factor; bipartite; circuits; connectivity;
D O I
10.1016/j.jctb.2007.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is pseudo 2-factor isomorphic if the parity of the number of circuits in a 2-factor is the same for all 2-factors of G. We prove that there exist no pseudo 2-factor isomorphic k-regular bipartite graphs for k >= 4. We also propose a characterization for 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs and obtain some partial results towards our conjecture. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:432 / 442
页数:11
相关论文
共 12 条
[1]   Two results on matching extensions with prescribed and proscribed edge sets [J].
Aldred, REL ;
Holton, DA ;
Porteous, MI ;
Plummer, MD .
DISCRETE MATHEMATICS, 1999, 206 (1-3) :35-43
[2]   Regular bipartite graphs with all 2-factors isomorphic [J].
Aldred, REL ;
Funk, M ;
Jackson, B ;
Labbate, D ;
Sheehan, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 92 (01) :151-161
[3]  
[Anonymous], 1992, J AM MATH SOC
[4]   Short solution of Kotzig's problem for bipartite graphs [J].
Asratian, AS .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) :160-168
[5]  
ASRATIAN AS, 1991, SOV MATH DOKL, V43, P1
[6]  
Biggs N., 1993, Algebraic Graph Theory
[7]   Disconnected 2-factors in planar cubic bridgeless graphs [J].
Diwan, AA .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 84 (02) :249-259
[8]   On the extremal number of edges in 2-factor Hamiltonian graphs [J].
Faudree, Ralph J. ;
Gould, Ronald J. ;
Jacobson, Michael S. .
GRAPH THEORY IN PARIS: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE, 2007, :139-+
[9]   2-Factor hamiltonian graphs [J].
Funk, M ;
Jackson, B ;
Labbate, D ;
Sheehan, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (01) :138-144
[10]  
McCuaig W, 2000, J GRAPH THEOR, V35, P46