Global existence and blow up of solutions for the Cauchy problem of some nonlinear wave equations

被引:0
作者
Wei, Xiao [1 ]
机构
[1] Changan Univ, Sch Sci, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Global solutions; Blow up; Generalized Sobolev Spaces; EVOLUTION-EQUATIONS; NONEXISTENCE; INSTABILITY; DECAY; SETS;
D O I
10.1007/s13324-021-00625-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global existence and blow up for the Cauchy problem for some hyperbolic system u(ktt )+ delta u(kt) - phi Delta u(k) + f(k) (u(1), u(2)) = lambda vertical bar u(k)vertical bar(beta-1) u(k). k = 1, 2. Under certain conditions we prove the global existence of solutions by adapting the method of modified potential well in a functional setting of generalized Sobolev spaces, and we prove that the solution decays exponentially by introducing an appropriate Lyapunov function. By the concave method, we discuss the blow-up behavior of weak solution with certain conditions and give some estimates for the lifespan of solutions.
引用
收藏
页数:23
相关论文
共 33 条
[31]  
Zauderer E., 2011, ferential Equations in Applied Mathematics
[32]  
Zeidler E., 1990, NONLINEAR FUNCTIONAL, DOI [10.1007/978-1-4612-0981-2, DOI 10.1007/978-1-4612-0981-2]
[33]  
ZUAZUA E, 1991, J MATH PURE APPL, V70, P513