Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbI3 Inverted Perovskite Solar Cells

被引:219
作者
Alsalloum, Abdullah Y. [1 ]
Turedi, Bekir [1 ]
Zheng, Xiaopeng [1 ]
Mitra, Somak [1 ]
Zhumekenov, Ayan A. [1 ]
Lee, Kwang Jae [1 ]
Maity, Partha [1 ]
Gereige, Issam [2 ]
AlSaggaf, Ahmed [2 ]
Rogan, Iman S. [1 ]
Mohammed, Omar F. [1 ]
Bakr, Osman M. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Saudi Aramco Res & Dev Ctr, Dhahran 31311, Saudi Arabia
关键词
SURFACE; PHOTOVOLTAGE; BANDGAP; WAFERS;
D O I
10.1021/acsenergylett.9b02787
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead halide perovskite solar cells (PSCs) have advanced rapidly in performance over the past decade. Single-crystal PSCs based on micrometers-thick grain-boundary-free films with long charge carrier diffusion lengths and enhanced light absorption (relative to polycrystalline films) have recently emerged as candidates for advancing PSCs further toward their theoretical limit. To date, the preferred method to grow MAPbI(3) single-crystal films for PSCs involves solution processing at temperatures greater than or similar to 120 degrees C, which adversely affects the films' crystalline quality, especially at the surface, primarily because of methylammonium iodide loss at such high temperatures. Here we devise a solvent-engineering approach to reduce the crystallization temperature of MAPbI(3) single-crystal films (<90 degrees C), yielding better quality films with longer carrier lifetimes. Single-crystal MAPbI(3) inverted PSCs fabricated with this strategy show markedly enhanced open-circuit voltages (1.15 V vs 1.08 V for controls), leading to power conversion efficiencies of up to 21.9%, which are among the highest reported for MAPbI(3)-based devices.
引用
收藏
页码:657 / +
页数:11
相关论文
共 50 条
[1]  
Aberle AG, 2000, PROG PHOTOVOLTAICS, V8, P473, DOI 10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO
[2]  
2-D
[3]   New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells [J].
Akin, Seckin ;
Arora, Neha ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael ;
Friend, Richard H. ;
Dar, M. Ibrahim .
ADVANCED ENERGY MATERIALS, 2020, 10 (13)
[4]   Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths [J].
Alarousu, Erkki ;
El-Zohry, Ahmed M. ;
Yin, Jun ;
Zhumekenov, Ayan A. ;
Yang, Chen ;
Alhabshi, Esra ;
Gereige, Issam ;
AlSaggaf, Ahmed ;
Malko, Anton V. ;
Bakr, Osman M. ;
Mohammed, Omar F. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (18) :4386-4390
[5]   Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process [J].
Chen, Lung-Chien ;
Chen, Cheng-Chiang ;
Chen, Jhih-Chyi ;
Wu, Chun-Guey .
SOLAR ENERGY, 2015, 122 :1047-1051
[6]   Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency [J].
Chen, Zhaolai ;
Turedi, Bekir ;
Alsalloum, Abdullah Y. ;
Yang, Chen ;
Zheng, Xiaopeng ;
Gereige, Issam ;
AlSaggaf, Ahmed ;
Mohammed, Omar F. ;
Bakr, Osman M. .
ACS ENERGY LETTERS, 2019, 4 (06) :1258-1259
[7]   Single Crystal Perovskite Solar Cells: Development and Perspectives [J].
Cheng, Xiao ;
Yang, Shuang ;
Cao, Bingqiang ;
Tao, Xutang ;
Chen, Zhaolai .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (04)
[8]   High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy [J].
Dar, M. Ibrahim ;
Franckevicius, Marius ;
Arora, Neha ;
Redeckas, Kipras ;
Vengris, Mikas ;
Gulbinas, Vidmantas ;
Zakeeruddin, Shaik Mohammed ;
Gratzel, Michael .
CHEMICAL PHYSICS LETTERS, 2017, 683 :211-215
[9]   Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells [J].
De Marco, Nicholas ;
Zhou, Huanping ;
Chen, Qi ;
Sun, Pengyu ;
Liu, Zonghao ;
Meng, Lei ;
Yao, En-Ping ;
Liu, Yongsheng ;
Schiffer, Andy ;
Yang, Yang .
NANO LETTERS, 2016, 16 (02) :1009-1016
[10]  
Dong Q, 2015, SCIENCE, V347, P6225