Anisotropic Quantum Emitter Interactions in Two-Dimensional Photonic-Crystal Baths

被引:27
作者
Gonzalez-Tudela, Alejandro [1 ,2 ]
Galve, Fernando [3 ]
机构
[1] CSIC, IFF, Calle Serrano 113b, Madrid 28006, Spain
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Univ Politecn Valencia, I3M UPV CSIC Inst Instrumentat Mol Imaging, E-46022 Valencia, Spain
基金
欧盟地平线“2020”;
关键词
atom-atom interactions; quantum nanophotonics; quantum simulation; non-Markovian dynamics; ATOM-ATOM INTERACTIONS; COLD ATOMS; STATES; EDGE;
D O I
10.1021/acsphotonics.8b01455
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum emitters interacting with two-dimensional photonic-crystal baths experience strong and anisotropic collective dissipation when they are spectrally tuned to 2D Van-Hove singularities. In this work, we show how to turn this dissipation into coherent dipole-dipole interactions with tunable range by breaking the lattice degeneracy at the Van-Hove point with a superlattice geometry. Using a coupled-mode description, we show that the origin of these interactions stems from the emergence of a qubit-photon bound state that inherits the anisotropic properties of the original dissipation and whose spatial decay can be tuned via the superlattice parameters or the detuning of the optical transition respect to the band-edges. Within that picture, we also calculate the emitter induced dynamics in an exact manner, bounding the parameter regimes where the dynamics lies within a Markovian description. As an application, we develop a four-qubit entanglement protocol exploiting the shape of the interactions. Finally, we provide a proof-of-principle example of a photonic crystal where such interactions can be obtained.
引用
收藏
页码:221 / 229
页数:17
相关论文
共 63 条
[1]  
[Anonymous], 1966, Applied mathematics series
[2]  
[Anonymous], ARXIV180807630
[3]  
Arguello-Luengo J., 2018, ARXIV180709228
[4]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[5]  
Bykov V. P., 1975, Soviet Journal of Quantum Electronics, V4, P861, DOI 10.1070/QE1975v004n07ABEH009654
[6]   Atom-field dressed states in slow-light waveguide QED [J].
Calajo, Giuseppe ;
Ciccarello, Francesco ;
Chang, Darrick ;
Rabl, Peter .
PHYSICAL REVIEW A, 2016, 93 (03)
[7]   Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons [J].
Chang, D. E. ;
Douglas, J. S. ;
Gonzalez-Tudela, A. ;
Hung, C. -L. ;
Kimble, H. J. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (03)
[8]   Self-Organization of Atoms along a Nanophotonic Waveguide [J].
Chang, D. E. ;
Cirac, J. I. ;
Kimble, H. J. .
PHYSICAL REVIEW LETTERS, 2013, 110 (11)
[9]   Goals and opportunities in quantum simulation [J].
Cirac, J. Ignacio ;
Zoller, Peter .
NATURE PHYSICS, 2012, 8 (04) :264-266
[10]  
Cohen-Tannoudji C., 1992, ATOM PHOTON INTERACT