A simple alternative to the relativistic Breit-Wigner distribution

被引:20
作者
Giacosa, Francesco [1 ,2 ]
Okopinska, Anna [1 ]
Shastry, Vanamali [1 ]
机构
[1] Jan Kochanowski Univ, Inst Phys, Ul Uniwersytecka 7, PL-25406 Kielce, Poland
[2] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
关键词
FIELD THEORY; MESON; RESONANCE; DECAYS; MODEL; WIDTH;
D O I
10.1140/epja/s10050-021-00641-2
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
First, we discuss the conditions under which the non-relativistic and relativistic types of the Breit-Wigner energy distributions are obtained. Then, upon insisting on the correct normalization of the energy distribution, we introduce a Flatte-like relativistic distribution -denominated as Sill distribution- that (i) contains left-threshold effects, (ii) is properly normalized for any decay width, (iii) can be obtained as an appropriate limit in which the decay width is a constant, (iv) is easily generalized to themulti-channel case (v) as well as to a convoluted form in case of a decay chain and - last but not least - (vi) is simple to deal with. We compare the Sill distribution to spectral functions derived within specific QFT models and show that it fairs well in concrete examples that involve a fit to experimental data for the rho, a(1)(1260), and K* (982) mesons as well as the Delta(1232) baryon. We also present a study of the f(2)(1270) which has more than one possible decay channels. Finally, we discuss the limitations of the Sill distribution using the a(0)(980)-a(0)(1450) and the K-0*(700)-K-0* (1430) resonances as examples.
引用
收藏
页数:24
相关论文
共 103 条
[61]   Glueballs, hybrids, multiquarks - Experimental facts versus QCD inspired concepts [J].
Klempt, Eberhard ;
Zaitsev, Alexander .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 454 (1-4) :1-202
[62]   SPONTANEOUS AND INDUCED ATOMIC DECAY IN PHOTONIC BAND STRUCTURES [J].
KOFMAN, AG ;
KURIZKI, G ;
SHERMAN, B .
JOURNAL OF MODERN OPTICS, 1994, 41 (02) :353-384
[63]   The Belle II Physics Book [J].
Kou, E. ;
Urquijo, P. ;
Altmannshofer, W. ;
Beaujean, F. ;
Bell, G. ;
Beneke, M. ;
Bigi, I. I. ;
Bishara, F. ;
Blanke, M. ;
Bobeth, C. ;
Bona, M. ;
Brambilla, N. ;
Braun, V. M. ;
Brod, J. ;
Buras, A. J. ;
Cheng, H. Y. ;
Chiang, C. W. ;
Ciuchini, M. ;
Colangelo, G. ;
Crivellin, A. ;
Czyz, H. ;
Datta, A. ;
De Fazio, F. ;
Deppisch, T. ;
Dolan, M. J. ;
Evans, J. ;
Fajfer, S. ;
Feldmann, T. ;
Godfrey, S. ;
Gronau, M. ;
Grossman, Y. ;
Guo, F. K. ;
Haisch, U. ;
Hanhart, C. ;
Hashimoto, S. ;
Hirose, S. ;
Hisano, J. ;
Hofer, L. ;
Hoferichter, M. ;
Hou, W. S. ;
Huber, T. ;
Hurth, T. ;
Jaeger, S. ;
Jahn, S. ;
Jamin, M. ;
Jones, J. ;
Jung, M. ;
Kagan, A. L. ;
Kahlhoefer, F. ;
Kamenik, J. F. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2019, 2019 (12)
[64]   Relativistic Voigt profile for unstable particles in high energy physics [J].
Kycia, Radoslaw A. ;
Jadach, Stanislaw .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :1040-1051
[65]   SOME SPECIAL EXAMPLES IN RENORMALIZABLE FIELD THEORY [J].
LEE, TD .
PHYSICAL REVIEW, 1954, 95 (05) :1329-1334
[66]  
Marcello S., 2016, J. Phys. Soc. Jpn. Conf. Proc., V10
[67]   RELATIVISTIC FIELD THEORY OF UNSTABLE PARTICLES [J].
MATTHEWS, PT ;
SALAM, A .
PHYSICAL REVIEW, 1958, 112 (01) :283-287
[68]   RELATIVISTIC THEORY OF UNSTABLE PARTICLES .2. [J].
MATTHEWS, PT ;
SALAM, A .
PHYSICAL REVIEW, 1959, 115 (04) :1079-1084
[69]   WOOLLY CUSPS [J].
NAUENBERG, M ;
PAIS, A .
PHYSICAL REVIEW, 1962, 126 (01) :360-&
[70]   NONEXPONENTIAL DECAYS OF HADRONS [J].
Pagliara, Giuseppe ;
Giacosa, Francesco .
INTERNATIONAL MEETING: EXCITED QCD, 2011, 4 (04) :753-758