Rainbow domination in graphs

被引:8
作者
Bresar, Bostjan [1 ]
Henning, Michael A. [1 ]
Rall, Douglas F. [1 ]
机构
[1] Univ Maribor, FEECS, SLO-2000 Maribor, Slovenia
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2008年 / 12卷 / 01期
关键词
domination; paired-domination; Cartesian product; Vizing's conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume we have a set of k colors and to each vertex of a graph G we assign an arbitrary subset of these colors. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this is called the k-rainbow dominating function of a graph G. The corresponding invariant gamma(rk)(G), which is the minimum sum of numbers of assigned colors over all vertices of G, is called the k-rainbow domination number of G. In this paper we connect this new concept to usual domination in (products of) graphs, and present its application to paired-domination of Cartesian products of graphs. Finally, we present a linear algorithm for determining a minimum 2-rainbow dominating set of a tree.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1968, USPEKHIMAT NAUK
[2]  
BRESAR B, IN PRESS UTILITAS MA
[3]  
Bresar B., 2001, DISCUSS MATH GRAPH T, V21, P5
[4]  
Bresar B, 2006, TAIWAN J MATH, V10, P1317
[5]  
CHARTRAND G, 1996, GRAPHS DIGRAPHS
[6]  
Clark W. E., 2000, ELECTRON J COMB, V7
[7]  
Cockayne E., 1975, Information Processing Letters, V4, P41, DOI 10.1016/0020-0190(75)90011-3
[8]   Paired-domination in claw-free cubic graphs [J].
Favaron, O ;
Henning, MA .
GRAPHS AND COMBINATORICS, 2004, 20 (04) :447-456
[9]  
HARTNELL B, DOMINATION CARTESIAN, P163
[10]  
Hartnell B. L., 2004, Discussiones Mathematicae Graph Theory, V24, P389, DOI 10.7151/dmgt.1238